题目内容
如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α,将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.
(1)△COD是什么三角形?说明理由;
(2)若AO=n2+1,AD=n2-1,OD=2n(n为大于1的整数),求α的度数;
(3)当α为多少度时,△AOD是等腰三角形?
(1)△COD是什么三角形?说明理由;
(2)若AO=n2+1,AD=n2-1,OD=2n(n为大于1的整数),求α的度数;
(3)当α为多少度时,△AOD是等腰三角形?
(1)△COD是等边三角形.
理由如下:∵△BOC绕点C按顺时针方向旋转60°得△ADC,
∴CO=CD,∠OCD=60°,
∴△COD是等边三角形;
(2)∵AD2+OD2=(n2-1)2+(2n)2
=n4-2n2+1+4n2
=n4+2n2+1
=(n2+1)2
=AO2,
∴△AOD是直角三角形,且∠ADO=90°,
∵△COD是等边三角形,
∴∠CDO=60°,
∴∠ADC=∠ADO+∠CDO=90°+60°=150°,
根据旋转的性质,α=∠ADC=150;
(3)∵α=∠ADC,∠CDO=60°,
∴∠ADO=α-60°,
又∵∠AOD=360°-110°-α-60°=190°-α,
∴∠DAO=180°-(190°-α)-(α-60°)=180°-190°+α-α+60°=50°,
∵△AOD是等腰三角形,
∴①∠AOD=∠ADO时,190°-α=α-60°,
解得α=125°,
②∠AOD=∠DAO时,190°-α=50°,
解得α=140°,
③∠ADO=∠DAO时,α-60°=50°,
解得α=110°,
综上所述,α为125°或140°或110°时,△AOD是等腰三角形.
理由如下:∵△BOC绕点C按顺时针方向旋转60°得△ADC,
∴CO=CD,∠OCD=60°,
∴△COD是等边三角形;
(2)∵AD2+OD2=(n2-1)2+(2n)2
=n4-2n2+1+4n2
=n4+2n2+1
=(n2+1)2
=AO2,
∴△AOD是直角三角形,且∠ADO=90°,
∵△COD是等边三角形,
∴∠CDO=60°,
∴∠ADC=∠ADO+∠CDO=90°+60°=150°,
根据旋转的性质,α=∠ADC=150;
(3)∵α=∠ADC,∠CDO=60°,
∴∠ADO=α-60°,
又∵∠AOD=360°-110°-α-60°=190°-α,
∴∠DAO=180°-(190°-α)-(α-60°)=180°-190°+α-α+60°=50°,
∵△AOD是等腰三角形,
∴①∠AOD=∠ADO时,190°-α=α-60°,
解得α=125°,
②∠AOD=∠DAO时,190°-α=50°,
解得α=140°,
③∠ADO=∠DAO时,α-60°=50°,
解得α=110°,
综上所述,α为125°或140°或110°时,△AOD是等腰三角形.
练习册系列答案
相关题目