题目内容
【题目】某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某种苹果到了收获季节,投入市场销售时,调查市场行情,发现该苹果的销售不会亏本,且该产品的日销售量y(千克)与销售单价x(元)之间满足一次函数关系关于销售单价、日销售量、日销售利润的几组对应值如表:
销售单价x(元) | 10 | 15 | 23 | 28 |
日销售量y(千克) | 200 | 150 | 70 | m |
日销售利润w(元) | 400 | 1050 | 1050 | 400 |
(注:日销售利润=日销售量×(销售单价﹣成本单价))
(1)求y关于x的函数解析式(要写出x的取值范围)及m的值;
(2)根据以上信息,填空:产品的成本单价是 元,当销售单价x= 元时,日销售利润w最大,最大值是 元;
(3)某农户今年共采摘苹果4800千克,该品种苹果的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批苹果?请说明理由
【答案】(1)y=﹣10x+300(8≤x≤30);(2)8,19,1210;(3)不能销售完这批苹果,见解析.
【解析】
(1)利用待定系数法求解可得;
(2)根据“总利润=单件利润×销售量”列出函数解析式,并配方成顶点式即可得出最大值;
(3)求出在(2)中情况下,即x=19时的销售量,据此求得40天的总销售量,比较即可得出答案.
解:(1)设y与x的函数关系式为y=kx+b,
将(10,200)、(15,150)代入,得:,
解得:,
∴y与x的函数关系式为y=﹣10x+300(8≤x≤30);
(2)设每天销售获得的利润为w,
则w=(x﹣8)y
=(x﹣8)(﹣10x+300)
=﹣10(x﹣19)2+1210,
∵8≤x≤30,
∴当x=19时,w取得最大值,最大值为1210;
故答案为:8,19,1210;
(3)由(2)知,当获得最大利润时,定价为19元/千克,
则每天的销售量为y=﹣10×19+300=110千克,
∵保质期为40天,
∴总销售量为40×110=4400,
又∵4400<4800,
∴不能销售完这批苹果.
【题目】小王同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表和频数分布直方图(如图).
月均用水量(单位:t) | 频数 | 百分比 |
2≤x<3 | 2 | 4% |
3≤x<4 | 12 | 24% |
4≤x<5 |
|
|
5≤x<6 | 10 | 20% |
6≤x<7 |
| 12% |
7≤x<8 | 3 | 6% |
8≤x<9 | 2 | 4% |
(1)请根据题中已有的信息补全频数分布表和频数分布直方图;
(2)如果家庭月均用水量“大于或等于4t且小于7t”为中等用水量家庭,请你估计总体小王所居住的小区中等用水量家庭大约有多少户?
(3)从月均用水量在2≤x<3,8≤x<9这两个范围内的样本家庭中任意抽取2个,请用列举法(画树状图或列表)求抽取出的2个家庭来自不同范围的概率.
【题目】某校的一个社会实践小组对本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,划分等级后的数据整理如下表:
等级 | 非常了解 | 比较了解 | 基本了解 | 不太了解 |
频数 | 20 | 35 | 41 | 4 |
(1)请根据调查结果,若该校有学生人,请估计这些学生中“比较了解”垃圾分类知识的人数.
(2)在“比较了解”的调查结果里,其中九(1)班学生共有人,其中名男生和名女生,在这人中,打算随机选出位进行采访,求出所选两位同学恰好是1名男生和1名女生的概率.(要求列表或画树状图)