题目内容
【题目】小王同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表和频数分布直方图(如图).
月均用水量(单位:t) | 频数 | 百分比 |
2≤x<3 | 2 | 4% |
3≤x<4 | 12 | 24% |
4≤x<5 |
|
|
5≤x<6 | 10 | 20% |
6≤x<7 |
| 12% |
7≤x<8 | 3 | 6% |
8≤x<9 | 2 | 4% |
(1)请根据题中已有的信息补全频数分布表和频数分布直方图;
(2)如果家庭月均用水量“大于或等于4t且小于7t”为中等用水量家庭,请你估计总体小王所居住的小区中等用水量家庭大约有多少户?
(3)从月均用水量在2≤x<3,8≤x<9这两个范围内的样本家庭中任意抽取2个,请用列举法(画树状图或列表)求抽取出的2个家庭来自不同范围的概率.
【答案】(1)15,30%,6;图见解析(2)279;(3)
【解析】分析:(1)根据第一组的频数是2,百分比是4%即可求得总人数,然后根据百分比的意义求解;
(2)利用总户数450乘以对应的百分比求解;
(3)在2≤x<3范围的两户用a、b表示,8≤x<9这两个范围内的两户用1,2表示,利用树状图法表示出所有可能的结果,然后利用概率公式求解.
详解:(1)调查的总数是:2÷4%=50(户),
则部分调查的户数是:50×12%=6(户),
则的户数是:5021210632=15(户),
所占的百分比是:1550×100%=30%.
故答案为:15,30%,6;
补全频数分布表和频数分布直方图,
如图所示:
(2)中等用水量家庭大约有450×(30%+20%+12%)=279(户);
(3)在范围的两户用a、b表示,
这两个范围内的两户用1,2表示,
画树状图:
则抽取出的2个家庭来自不同范围的概率是:
练习册系列答案
相关题目