题目内容

【题目】设ω是一个平面图形,如果用直尺和圆规经过有限步作图(简称尺规作图),画出一个正方形与ω的面积相等(简称等积),那么这样的等积转化称为ω的“化方”.

(1)阅读填空

如图①,已知矩形ABCD,延长AD到E,使DE=DC,以AE为直径作半圆.延长CD交半圆于点H,以DH为边作正方形DFGH,则正方形DFGH与矩形ABCD等积.

理由:连接AH,EH.

∵AE为直径,∴∠AHE=90°,∴∠HAE+∠HEA=90°.

∵DH⊥AE,∴∠ADH=∠EDH=90°

∴∠HAD+∠AHD=90°

∴∠AHD=∠HED,∴△ADH∽

,即DH2=AD×DE.

又∵DE=DC

∴DH2= ,即正方形DFGH与矩形ABCD等积.

(2)操作实践

平行四边形的“化方”思路是,先把平行四边形转化为等积的矩形,再把矩形转化为等积的正方形.

如图②,请用尺规作图作出与ABCD等积的矩形(不要求写具体作法,保留作图痕迹).

(3)解决问题三角形的“化方”思路是:先把三角形转化为等积的 (填写图形名称),再转化为等积的正方形.

如图③,△ABC的顶点在正方形网格的格点上,请作出与△ABC等积的正方形的一条边(不要求写具体作法,保留作图痕迹,不通过计算△ABC面积作图).

(4)拓展探究

n边形(n>3)的“化方”思路之一是:把n边形转化为等积的n﹣1边形,…,直至转化为等积的三角形,从而可以化方.

如图④,四边形ABCD的顶点在正方形网格的格点上,请作出与四边形ABCD等积的三角形(不要求写具体作法,保留作图痕迹,不通过计算四边形ABCD面积作图).

【答案】(1)HDEAD×DC;(2)作图见试题解析;(3)矩形,作图见试题解析;(4)作图见试题解析

【解析】

试题分析:(1)根据相似三角形的判定方法,得ADH∽△HDE;根据等量代换,可得DH2=AD×DC.

(2)先把平行四边形ABCD转化为等积的矩形ADMN,然后再作正方形DFGH与矩形ABMN等积,所以正方形DFGH与平行四边形ABCD等积.

(3)先以三角形的底为矩形的长,以三角形的高的一半为矩形的宽,将ABC转化为等积的矩形MBCD;然后延长MD到E,使DE=DC,以ME为直径作半圆.延长CD交半圆于点H,则DH即为与ABC等积的正方形的一条边.

(4)先根据AGEH,得到AG=2EH,再由CF=2DF,得到CFEH=DFAG,由此得出SCEF=SADF,SCDI=SAEI,所以SBCE=S四边形ABCD,即BCE与四边形ABCD等积.

试题解析:(1)如图①,连接AH,EH,AE为直径,∴∠AHE=90°,∴∠HAE+HEA=90°DHAE,∴∠ADH=EDH=90°,∴∠HAD+AHD=90°,∴∠AHD=HED,∴△ADH∽△HDE,即DH2=AD×DEDE=DC,DH2=AD×DC即正方形DFGH与矩形ABCD等积

故答案为:HDEAD×DC

(2)如图②,延长AD到E,使DE=DM,连接AH,EH,矩形ADMN的长和宽分别等于平行四边形ABCD的底和高,矩形ADMN的面积等于平行四边形ABCD的面积,AE为直径,∴∠AHE=90°,∴∠HAE+HEA=90°DHAE,∴∠ADH=EDH=90°,∴∠HAD+AHD=90°,∴∠AHD=HED,∴△ADH∽△HDE,即DH2=AD×DEDE=DM,DH2=AD×DM,即正方形DFGH与矩形ABMN等积,正方形DFGH与平行四边形ABCD等积

(3)如图③,延长MD到E,使DE=DC,连接MH,EH,矩形MDBC的长等于ABC的底,矩形MDBC的宽等于ABC的高的一半,矩形MDBC的面积等于ABC的面积,ME为直径,∴∠MHE=90°,∴∠HME+HEM=90°DHME,∴∠MDH=EDH=90°,∴∠HMD+MHD=90°,∴∠MHD=HED,∴△MDH∽△HDE,即DH2=MD×DEDE=DC,DH2=MD×DC,DH即为与ABC等积的正方形的一条边

(4)如图④,延长BA、CD交于点F,作AGCF于点G,EHCF于点H,BCE与四边形ABCD等积,理由如下:AGEH,AG=2EH,又CF=2DFCFEH=DFAG,SCEF=SADFSCDI=SAEISBCE=S四边形ABCD,即BCE与四边形ABCD等积.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网