题目内容
【题目】计算:
(1)
(2)﹣
(3) ﹣4
(4) +(1﹣ )0 .
(5)(2 + )(2 ﹣ )
(6) ÷ + × ﹣ .
【答案】
(1)解:原式= =
(2)解:原式=﹣
(3)解:原式= ﹣4
=10 ﹣4
(4)解:原式= +1
=5+1
=6
(5)解:原式=12﹣6
=6
(6)解:原式= + ﹣2
=4+ ﹣2
=4+
【解析】(1)、(2)利用二次根式的性质化简;(3)先把各二次根式化简为最简二次根式,然后约分即可;(4)先把各二次根式化简为最简二次根式,然后利用二次根式的除法法则和零指数幂的意义计算;(5)利用平方差公式计算;(6)先根据二次根式的乘除法则运算,然后化简后合并即可.
【考点精析】掌握零指数幂法则和整数指数幂的运算性质是解答本题的根本,需要知道零次幂和负整数指数幂的意义: a0=1(a≠0);a-p=1/ap(a≠0,p为正整数);aman=am+n(m、n是正整数);(am)n=amn(m、n是正整数);(ab)n=anbn(n是正整数);am/an=am-n(a不等于0,m、n为正整数);(a/b)n=an/bn(n为正整数).