题目内容

【题目】矩形AOCD绕顶点A(0,5)逆时针方向旋转,当旋转到如图所示的位置时,边BE交边CD于M,且ME=2,CM=4.

(1)求AD的长;
(2)求阴影部分的面积和直线AM的解析式;
(3)求经过A、B、D三点的抛物线的解析式;
(4)在抛物线上是否存在点P,使SPAM=?若存在,求出P点坐标;若不存在,请说明理由.

【答案】
(1)

解:作BP⊥AD于P,BQ⊥MC于Q,如图1,

∵矩形AOCD绕顶点A(0,5)逆时针方向旋转得到矩形ABEF,

∴AB=AO=5,BE=OC=AD,∠ABE=90°,

∵∠PBQ=90°,

∴∠ABP=∠MBQ,

∴Rt△ABP∽Rt△MBQ,

设BQ=PD=x,AP=y,则AD=x+y,BM=x+y﹣2,

∴PBMQ=xy,

∵PB﹣MQ=DQ﹣MQ=DM=1,

∴(PB﹣MQ)2=1,即PB2﹣2PBMQ+MQ2=1,

∴52﹣y2﹣2xy+(x+y﹣2)2﹣x2=1,解得x+y=7,

∴BM=5,

∴BE=BM+ME=5+2=7,

∴AD=7;


(2)

解:∵AB=BM,

∴Rt△ABP≌Rt△MBQ,

∴BQ=PD=7﹣AP,MQ=AP,

∵BQ2+MQ2=BM2

∴(7﹣MQ)2+MQ2=52,解得MQ=4(舍去)或MQ=3,

∴BQ=7﹣3=4,

∴S阴影部分=S梯形ABQD﹣SBQM

=×(4+7)×4﹣×4×3

=16;

设直线AM的解析式为y=kx+b,

把A(0,5),M(7,4)代入得,解得

∴直线AM的解析式为y=﹣x+5;


(3)

解:设经过A、B、D三点的抛物线的解析式为y=ax2+bx+c,

∵AP=MQ=3,BP=DQ=4,

∴B(3,1),

而A(0,5),D(7,5),

,解得

∴经过A、B、D三点的抛物线的解析式为y=x2x+5;


(4)

解:当点P在线段AM的下方的抛物线上时,作PK∥y轴交AM于K,如图2

设P(x,x+5),则K(x,﹣x+5),则KP=﹣+x,根据三角形面积公式可得到(﹣x2+x)7=,解得x1=3,x2=,于是得到此时P点坐标为(3,1)、();再求出过点(3,1)与()的直线l的解析式为y=﹣x+,则可得到直线l与y轴的交点A′的坐标为(0,),所以AA′=,然后把直线AM向上平移个单位得到l′,直线l′与抛物线的交点即为P点,由于A″(0,),则直线l′的解析式为y=﹣x+,再通过解方程组得P点坐标为(3,1)、

)、()、().


【解析】

(1)作BP⊥AD于P,BQ⊥MC于Q,如图1,根据旋转的性质得AB=AO=5,BE=OC=AD,∠ABE=90°,利用等角的余角相等得∠ABP=∠MBQ,可证明Rt△ABP∽Rt△MBQ得到,设BQ=PD=x,AP=y,则AD=x+y,所以BM=x+y﹣2,利用比例性质得到PBMQ=xy,而PB﹣MQ=DQ﹣MQ=DM=1,利用完全平方公式和勾股定理得到52﹣y2﹣2xy+(x+y﹣2)2﹣x2=1,解得x+y=7,则BM=5,BE=BM+ME=7,所以AD=7;

(2)由AB=BM可判断Rt△ABP≌Rt△MBQ,则BQ=PD=7﹣AP,MQ=AP,利用勾股定理得到(7﹣MQ)2+MQ2=52,解得MQ=4(舍去)或MQ=3,则BQ=4,根据三角形面积公式和梯形面积公式,利用S阴影部分=S梯形ABQD﹣S△BQM进行计算即可;然后利用待定系数法求直线AM的解析式;

(3)先确定B(3,1),然后利用待定系数法求抛物线的解析式;

(4)当点P在线段AM的下方的抛物线上时,作PK∥y轴交AM于K,如图2设P(x,x+5),则K(x,﹣x+5),则KP=﹣+x,根据三角形面积公式得到(﹣x2+x)7=,解得x1=3,x2=,于是得到此时P点坐标为(3,1)、();再求出过点(3,1)与()的直线l的解析式为y=﹣x+,则可得到直线l与y轴的交点A′的坐标为(0,),所以AA′=,然后把直线AM向上平移个单位得到l′,直线l′与抛物线的交点即为P点,由于A″(0,),则直线l′的解析式为y=﹣x+,再通过解方程组得P点坐标.


【考点精析】本题主要考查了二次函数图象的平移的相关知识点,需要掌握平移步骤:(1)配方 y=a(x-h)2+k,确定顶点(h,k)(2)对x轴左加右减;对y轴上加下减才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网