题目内容

【题目】大学毕业生小王响应国家“自主创业”的号召,利用银行小额无息贷款开办了一家饰品店.该店购进一种今年新上市的饰品进行销售,饰品的进价为每件40元,售价为每件60元,每月可卖出300件.市场调查反映:调整价格时,售价每涨1元每月要少卖10件;售价每下降1元每月要多卖20件.为了获得更大的利润,现将饰品售价调整为60+x(元/件)(x>0即售价上涨,x<0即售价下降),每月饰品销量为y(件),月利润为w(元).
(1)
直接写出yx之间的函数关系式;
(2)如何确定销售价格才能使月利润最大?求最大月利润;
(3)为了使每月利润不少于6000元应如何控制销售价格?

【答案】
(1)

解:由题意可得:y=


(2)

解:由题意可得:w=

化简得:w=

即w=

由题意可知x应取整数,故当x=﹣2或x=﹣3时,w<6125<6250,

故当销售价格为65元时,利润最大,最大利润为6250元;


(3)

解:由题意w≥6000,如图,令w=6000,

即6000=﹣10(x﹣5)2+6250,6000=﹣20(x+2+6125,

解得:x1=﹣5,x2=0,x3=10,

﹣5≤x≤10,

故将销售价格控制在55元到70元之间(含55元和70元)才能使每月利润不少于6000元.


【解析】(1)直接根据题意售价每涨1元每月要少卖10件;售价每下降1元每月要多卖20件,进而得出等量关系;
(2)利用每件利润×销量=总利润,进而利用配方法求出即可;
(3)利用函数图象结合一元二次方程的解法得出符合题意的答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网