题目内容
【题目】如图,已知双曲线y1=与直线y2=ax+b交于点A(﹣4,1)和点B(m,﹣4).
(1)求双曲线和直线的解析式;
(2)直接写出线段AB的长和y1>y2时x的取值范围.
【答案】(1)反比例函数的解析式为y1=﹣;直线解析式为y2=﹣x﹣3;(2);﹣4<x<0或x>1
【解析】(1)先把A点坐标代入中求出k得到反比例函数的解析式为,再把B(m,-4)代入中求出m得到B(1,-4),然后利用待定系数法求直线解析式;
(2)利用两点间的距离公式计算AB的长;利用函数图象,写出反比例函数图象在直线上方所对应的自变量的范围得到y1>y2时x的取值范围.
(1)把A(﹣4,1)代入得k=﹣4×1=﹣4,
∴反比例函数的解析式为,
把B(m,﹣4)代入得﹣4m=﹣4,解得m=1,则B(1,﹣4),
把A(﹣4,1),B(1,﹣4)代入y2=ax+b得,解得,
∴直线解析式为y2=﹣x﹣3;
(2)AB=,
观察图象可知当﹣4<x<0或x>1时,y1>y2.
练习册系列答案
相关题目
【题目】一个箱子内有4颗相同的球,将4颗球分别标示号码1、2、3、4,今翔翔以每次从箱子内取一颗球且取后放回的方式抽取,并预计取球10次,现已取了8次,取出的结果如表所列:
次数 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次 | 第6次 | 第7次 | 第8次 | 第9次 | 第10次 |
号码 | 1 | 3 | 4 | 4 | 2 | 1 | 4 | 1 |
若每次取球时,任一颗球被取到的机会皆相等,且取出的号码即为得分,请回答下列问题:
(1)请求出第1次至第8次得分的平均数.
(2)承(1),翔翔打算依计划继续从箱子取球2次,请判断是否可能发生「这10次得分的平均数不小于2.2,且不大于2.4」的情形?若有可能,请计算出发生此情形的机率,并完整写出你的解题过程;若不可能,请完整说明你的理由.