题目内容
如图,抛物线与x轴交于点A和点B,与y轴交于点C,已知点B的坐标为(3,0).
(1)求a的值和抛物线的顶点坐标;
(2)分别连接AC、BC.在x轴下方的抛物线上求一点M,使△AMC与△ABC的面积相等;
(3)设N是抛物线对称轴上的一个动点,d=|AN﹣CN|.探究:是否存在一点N,使d的值最大?若存在,请直接写出点N的坐标和d的最大值;若不存在,请简单说明理由.
(1)。抛物线的顶点坐标为(﹣,)。
(2)M点的坐标是(﹣9,﹣4)。
(3)在抛物线对称轴上存在一点N,能够使d=|AN﹣CN|的值最大。理由见解析。
解析分析:(1)先把点B的坐标代入,可求得a的值,再利用配方法将一般式化为顶点式,即可求得抛物线的顶点坐标。
(2)先由抛物线的解析式,求出与x轴的交点A的坐标,与y轴的交点C的坐标,再由△AMC与△ABC的面积相等,得出这两个三角形AC边上的高相等,又由点B与点M都在AC的下方,得出BM∥AC,则点M既在过B点与AC平行的直线上,又在抛物线上,所以先运用待定系数法求出直线AC的解析式为y=x+2,再设直线BM的解析式为y=x+n,将点B(3,0)代入,求出n的值,得到直线BM的解析式为,然后解方程组,即可求出点M的坐标。
(3)连接BC并延长,交抛物线的对称轴x=﹣于点N,连接AN,根据轴对称的性质得出AN=BN,并且根据三角形三边关系定理得出此时d=|AN﹣CN|=|BN﹣CN|=BC最大.运用待定系数法求出直线BC的解析式,再将x=﹣代入,求出y的值,得到点N的坐标,然后利用勾股定理求出d的最大值BC即可。
解:(1)∵抛物线经过点B(3,0),
∴,解得。
∴。
∵,
∴抛物线的顶点坐标为(﹣,)。
(2)∵抛物线的对称轴为直线x=﹣,与x轴交于点A和点B,点B的坐标为(3,0),
∴点A的坐标为(﹣6,0)。
又∵当x=0时,y=2,∴C点坐标为(0,2)。
设直线AC的解析式为y=kx+b,
则,解得:。
∴直线AC的解析式为y=x+2。
∵S△AMC=S△ABC,∴点B与点M到AC的距离相等。
又∵点B与点M都在AC的下方,∴BM∥AC。
设直线BM的解析式为y=x+n,将点B(3,0)代入,得×3+n=0,解得n=﹣1。
∴直线BM的解析式为.
由,解得,。
∴M点的坐标是(﹣9,﹣4)。
(3)在抛物线对称轴上存在一点N,能够使d=|AN﹣CN|的值最大。理由如下:
∵抛物线与x轴交于点A和点B,
∴点A和点B关于抛物线的对称轴对称。
连接BC并延长,交直线x=﹣于点N,连接AN,则AN=BN,此时d=|AN﹣CN|=|BN﹣CN|=BC最大。
设直线BC的解析式为y=mx+t,将B(3,0),C(0,2)两点的坐标代入,
得,解得:。
∴直线BC的解析式为y=x+2。,
当x=﹣时,y=-×(﹣)+2=3。
∴点N的坐标为(﹣,3),d的最大值为。
已知点(-1,y1)、(2,y2)、(3,y3)在反比例函数的图象上.下列结论中正确的是
A.y1>y2>y3 | B.y1>y3>y2 | C.y3>y1>y2 | D.y2>y3>y1 |