题目内容
【题目】如图,在直角坐标系中,点,是第一象限角平分线上的两点,点的纵坐标为1,且,在轴上取一点,连接,,,,使得四边形的周长最小,这个最小周长的值为________.
【答案】
【解析】
先求出AC=BC=2,作点B关于y轴对称的点E,连接AE,交y轴于D,此时AE=AD+BD,且AD+BD值最小,即此时四边形的周长最小;作FG∥y轴,AG∥x轴,交于点G,则GF⊥AG,根据勾股定理求出AE即可.
解:∵,点的纵坐标为1,
∴AC∥x轴,
∵点,是第一象限角平分线上的两点,
∴∠BAC=45°,
∵,
∴∠BAC=∠ABC=45°,
∴∠C=90°,
∴BC∥y轴,
∴AC=BC=2,
作点B关于y轴对称的点E,连接AE,交y轴于D,此时AE=AD+BD,且AD+BD值最小,
∴此时四边形的周长最小,
作FG∥y轴,AG∥x轴,交于点G,则GF⊥AG,
∴EG=2,GA=4,
在Rt△AGE中,
,
∴ 四边形的周长最小值为2+2+=4+ .
【题目】4月23日是世界读书日,校文学社为了解学生课外阅读的情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:
收集数据:从学校随机抽取20名,进行了每周用于课外阅读时间的调查,数据如下(单位:):
30 | 60 | 81 | 50 | 40 | 110 | 130 | 146 | 90 | 100 |
60 | 81 | 120 | 140 | 70 | 81 | 10 | 20 | 100 | 81 |
整理数据:按如下分数段整理样本数据并补全表格:
等级 | ||||
人数 | 3 | 8 | 4 |
分析数据:补全下列表格中的统计量:
平均数 | 中位数 | 众数 |
80 |
得出结论:
(1)请写出表中_________;_________;__________;
(2)如果该校现有学生7500人,估计等级为“”的学生有_________名;
(3)假设平均阅读一本课外书的时间为,请你选择一种统计量估计该校学生每人一年(按52周计算)平均阅读多少本课外书?