题目内容
【题目】如图,已知函数y=x与反比例函数y= (x>0)的图象交于点A.将y=x的图象向下移6个单位后与双曲线y=交于点B,与x轴交于点C.
(1)求点C的坐标;
(2)若=2,求反比例函数的表达式.
【答案】(1)C(,0);(2)
【解析】
(1)根据一次函数图象的平移问题由y=x的图象向下平移6个单位得到直线BC的解析式为y=x-6,然后把y=0代入即可确定C点坐标;
(2)作AE⊥x轴于E点,BF⊥x轴于F点,易证得Rt△OAE∽△RtCBF,则=2,若设A点坐标为(a,a),则CF=a,BF=a,得到B点坐标为(+a,a),然后根据反比例函数上点的坐标特征得aa=(+a)a,解得a=3,于是可确定点A的坐标为(3,4),再利用待定系数法确定反比例函数的解析式.
(1)∵y=x的图象向下平移6个单位后与双曲线y=交于点B,与x轴交于点C,
∴直线BC的解析式为y=x-6,
把y=0代入得x-6=0,解得x=,
∴C点坐标为(,0);
(2)作AE⊥x轴于E点,BF⊥x轴于F点,如图,
∵OA∥BC,
∴∠AOC=∠BCF,
∴Rt△OAE∽Rt△CBF,
∴=2,
设A点坐标为(a,a),则OE=a,AE=a,
∴CF=a,BF=a,
∴OF=OC+CF=+a,
∴B点坐标为(+a,a),
∵点A与点B都在y=的图象上,
∴aa=(+a)a,解得a=3,
∴点A的坐标为(3,4),
把A(3,4)代入y=得k=3×4=12,
∴反比例函数的解析式为y=.
【题目】某商店分两次购进两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:
购进数量(件) | 购进所需费用(元) | ||
|
| ||
第一次 | 30 | 40 | 3800 |
第二次 | 40 | 30 | 3200 |
(1) 求两种商品每件的进价分别是多少元?
(2) 商场决定种商品以每件30元出售,种商品以每件100元出售.为满足市场需求,需购进两种商品共1000件,且种商品的数量不少于种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.