题目内容
【题目】已知二次函数y=ax2﹣2ax.
(1)二次函数图象的对称轴是直线x= ;
(2)当0≤x≤3时,y的最大值与最小值的差为4,求该二次函数的表达式;
(3)若a<0,对于二次函数图象上的两点P(x1,y1),Q(x2,y2),当t≤x1≤t+1,x2≥3时,均满足y1≥y2,请结合函数图象,直接写出t的取值范围.
【答案】(1)1;(2)y=x2﹣2x或y=﹣x2+2x;(3)﹣1≤t≤2
【解析】
(1)由对称轴是直线x=,可求解;
(2)分a>0或a<0两种情况讨论,求出y的最大值和最小值,即可求解;
(3)利用函数图象的性质可求解.
解:(1)由题意可得:对称轴是直线x==1,
故答案为:1;
(2)当a>0时,∵对称轴为x=1,
当x=1时,y有最小值为﹣a,当x=3时,y有最大值为3a,
∴3a﹣(﹣a)=4.
∴a=1,
∴二次函数的表达式为:y=x2﹣2x;
当a<0时,同理可得
y有最大值为﹣a; y有最小值为3a,
∴﹣a﹣3a=4,
∴a=﹣1,
∴二次函数的表达式为:y=﹣x2+2x;
综上所述,二次函数的表达式为y=x2﹣2x或y=﹣x2+2x;
(3)∵a<0,对称轴为x=1,
∴x≤1时,y随x的增大而增大,x>1时,y随x的增大而减小,x=﹣1和x=3时的函数值相等,
∵t≤x1≤t+1,x2≥3时,均满足y1≥y2,
∴t≥﹣1,t+1≤3,
∴﹣1≤t≤2.
【题目】生活垃圾分类回收是实现垃圾减量化和资源化的重要途径和手段.为了解2019年某市第二季度日均可回收物回收量情况,随机抽取该市2019年第二季度的天数据,整理后绘制成统计表进行分析.
日均可回收物回收量(千吨) | 合计 | |||||
频数 | 1 | 2 | 3 | |||
频率 | 0.05 | 0.10 | 0.15 | 1 |
表中组的频率满足.
下面有四个推断:
①表中的值为20;
②表中的值可以为7;
③这天的日均可回收物回收量的中位数在组;
④这天的日均可回收物回收量的平均数不低于3.
所有合理推断的序号是( )
A.①②B.①③C.②③④D.①③④