题目内容
【题目】阅读以下材料,并按要求完成相应地任务:
莱昂哈德·欧拉(Leonhard Euler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面是欧拉发现的一个定理:在△ABC中,R和r分别为外接圆和内切圆的半径,O和I分别为其外心和内心,则.
如图1,⊙O和⊙I分别是△ABC的外接圆和内切圆,⊙I与AB相切分于点F,设⊙O的半径为R,⊙I的半径为r,外心O(三角形三边垂直平分线的交点)与内心I(三角形三条角平分线的交点)之间的距离OI=d,则有d2=R2﹣2Rr.
下面是该定理的证明过程(部分):
延长AI交⊙O于点D,过点I作⊙O的直径MN,连接DM,AN.
∵∠D=∠N,∠DMI=∠NAI(同弧所对的圆周角相等),
∴△MDI∽△ANI,
∴,
∴①,
如图2,在图1(隐去MD,AN)的基础上作⊙O的直径DE,连接BE,BD,BI,IF,
∵DE是⊙O的直径,∴∠DBE=90°,
∵⊙I与AB相切于点F,∴∠AFI=90°,
∴∠DBE=∠IFA,
∵∠BAD=∠E(同弧所对圆周角相等),
∴△AIF∽△EDB,
∴,∴②,
任务:(1)观察发现:, (用含R,d的代数式表示);
(2)请判断BD和ID的数量关系,并说明理由;
(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;
(4)应用:若△ABC的外接圆的半径为5cm,内切圆的半径为2cm,则△ABC的外心与内心之间的距离为 cm.
【答案】(1)R-d;(2)BD=ID,理由见解析;(3)见解析;(4).
【解析】
(1)直接观察可得;
(2)由三角形内心的性质可得∠BAD=∠CAD,∠CBI=∠ABI,由圆周角定理可得∠DBC=∠CAD,再根据三角形外角的性质即可求得∠BID=∠DBI,继而可证得BD=ID;
(3)应用(1)(2)结论即可;
(4)直接代入结论进行计算即可.
(1)∵O、I、N三点共线,
∴OI+IN=ON,
∴IN=ON﹣OI=R﹣d,
故答案为:R﹣d;
(2)BD=ID,理由如下:
∵点I是△ABC的内心,
∴∠BAD=∠CAD,∠CBI=∠ABI,
∵∠DBC=∠CAD,∠BID=∠BAD+∠ABI,∠DBI=∠DBC+∠CBI,
∴∠BID=∠DBI,
∴BD=ID;
(3)由(2)知:BD=ID,
又,,
∴DE·IF=IM·IN,
∴,
∴
∴;
(4)由(3)知:,
把R=5,r=2代入得:,
∵d>0,
∴,
故答案为:.