题目内容
【题目】如图,某建筑物AC顶部有一旗杆AB,且点A,B,C在同一条直线上,小明在地面D处观测旗杆顶端B的仰角为30°,然后他正对建筑物的方向前进了20米到达地面的E处,又测得旗杆顶端B的仰角为60°,已知建筑物的高度AC=12m,求旗杆AB的高度(结果精确到0.1米).参考数据: ≈1.73, ≈1.41.
【答案】解:∵∠BEC=60°,∠BDE=30°,
∴∠DBE=60°﹣30°=30°,
∴BE=DE=20,
在Rt△BEC中,
BC=BEsin60°=20× =10 ≈17.3(米),
∴AB=BC﹣AC=17.3﹣12=5.3(米),
答:旗杆AB的高度为5.3米.
【解析】首先根据三角形外角的性质可得∠DBE=60°-30°=30°,根据等角对等边可得BE=DE,然后在Rt△BEC中,根据三角形函数可得BC=BEsin60°,进而可得BC长,然后可得AB的高度.
【考点精析】本题主要考查了关于仰角俯角问题的相关知识点,需要掌握仰角:视线在水平线上方的角;俯角:视线在水平线下方的角才能正确解答此题.
【题目】小红购买了两次笔记本,购买情况及总费用如下表
购买次数 | 购买各种笔记本的数量单位:本 | 购买总费用单位:元 | |
甲 | 乙 | ||
第一次 | 1 | 4 | 22 |
第二次 | 2 | 3 | 24 |
备注:两次购买甲、乙笔记本的单价不变
甲、乙笔记本的单价分别是多少元?
小红第三次以相同的价格购买甲、乙两种笔记本共18本,总费用为92元,则小红第三次购买甲、乙笔记本各多少本?