题目内容
【题目】利用完全平方公式进行因式分解,解答下列问题:
因式分解: .
填空: ①当时,代数式_ .
②当_ 时,代数式.
③代数式的最小值是_ .
拓展与应用:求代数式的最小值.
【答案】(1);(2) ①,②3,③4;(3)3
【解析】
(1)符合完全平方公式,用公式进行因式分解即可;
(2)①先将代数式进行因式分解,再代入求值;
②将代数式因式分解成完全平方的形式,观察得出结果;
③先将代数式因式分解为完全平方公式,根据一个数的平方为非负来求解最小值;
(3)先将代数式因式分解为关于a、b的2个完全平方公式,再求最小值
(1)根据完全平方公式:;
(2)①,将代入得,结果为:0;
②,化简得:,故x=3;
③
∵为非负,∴当,即x=-4时,有最小值
∴最小值为:4
(3)
根据上一问结论可知,当a=3,b=-4时有最小值,最小值为:3
【题目】交通工程学理论把在单向道路上行驶的汽车看成连续的液体,并用流量、速度、密度三个概念描述车流的基本特征。其中流量q(辆/小时)指单位时间内通过道路指定断面的车辆数;速度v(千米/小时)指通过道路指定断面的车辆速度;密度(辆/千米)指通过道路指定断面单位长度内的车辆数,为配合大数据治堵行动,测得某路段流量q与速度v之间的部分数据如下表:
速度v(千米/小时) | … | 5 | 10 | 20 | 32 | 40 | 48 | … |
流量q(辆/小时) | … | 550 | 1000 | 1600 | 1792 | 1600 | 1152 | … |
(1)根据上表信息,下列三个函数关系式中,刻画q,v关系最准确的是(只需填上正确答案的序号)① ② ③
(2)请利用(1)中选取的函数关系式分析,当该路段的车流速为多少时,流量达到最大?最大流量是多少?
(3)已知q,v,k满足 ,请结合(1)中选取的函数关系式继续解决下列问题:
①市交通运行监控平台显示,当 时道路出现轻度拥堵,试分析当车流密度k在什么范围时,该路段出现轻度拥堵;
②在理想状态下,假设前后两车车头之间的距离d(米)均相等,求流量q最大时d的值