题目内容

【题目】在矩形ABCD中,AB=a,AD=b,点M为BC边上一动点(点M与点B、C不重合),连接AM,过点M作MN⊥AM,垂足为M,MN交CD或CD的延长线于点N.

(1)求证:△CMN∽△BAM;
(2)设BM=x,CN=y,求y关于x的函数解析式.当x取何值时,y有最大值,并求出y的最大值;
(3)当点M在BC上运动时,求使得下列两个条件都成立的b的取值范围:①点N始终在线段CD上,②点M在某一位置时,点N恰好与点D重合.

【答案】
(1)

【解答】解:∵四边形ABCD是矩形,

∴∠B=∠C=90°,

∴∠BAM+∠AMB=90°.

∵MN⊥AM,即∠AMN=90°,

∴∠CMN+∠AMB=90°,

∴∠BAM=∠CMN,

∴△CMN∽△BAM;


(2)

∵△CMN∽△BAM,

∵BM=x,CN=y,AB=a,BC=AD=b,

∴y=(bx﹣x2)=(x2﹣bx)

=[(x﹣2]

=(x﹣2+

<0,

∴当x=时,y取最大值,最大值为


(3)

由题可知:

当0<x<b时,y的最大值为a,即=a,

解得:b=2a.

∴要同时满足两个条件,b的值为2a.


【解析】(1)由四边形ABCD是矩形可得∠B=∠C=90°,要证△CMN∽△BAM,只需证∠BAM=∠CMN即可;
(2)根据相似三角形的性质,由△CMN∽△BAM即可得到y与x的函数解析式,然后只需运用配方法就可求出y的最大值;
(3)由点M在BC上运动(点M与点B、C不重合),可得0<x<b,要满足条件①,应保证当0<x<b时,y≤a恒成立,要满足条件②,需存在一个x,使得y=a,综合条件①和②,当0<x<b时y最大值应为a,然后结合(2)中的结论,就可解决问题.
【考点精析】解答此题的关键在于理解二次函数的最值的相关知识,掌握如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当x=-b/2a时,y最值=(4ac-b2)/4a,以及对矩形的性质的理解,了解矩形的四个角都是直角,矩形的对角线相等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网