题目内容
【题目】如图,在△ABC中,D为AC边的中点,且DB⊥BC,BC=4,CD=5.
(1)求DB的长;
(2)在△ABC中,求BC边上高的长.
【答案】
(1)
【解答】解:∵DB⊥BC,BC=4,CD=5,
∴BD==3;
(2)
延长CB,过点A作AE⊥CB延长线于点E,
∵DB⊥BC,AE⊥BC,
∴AE∥DB,
∵D为AC边的中点,
∴BD=AE,
∴AE=6,即BC边上高的长为6.
【解析】(1)直接利用勾股定理得出BD的长即可;
(2)利用平行线分线段成比例定理得出BD=AE,进而求出即可.
【考点精析】根据题目的已知条件,利用勾股定理的概念和三角形中位线定理的相关知识可以得到问题的答案,需要掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;连接三角形两边中点的线段叫做三角形的中位线;三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.
【题目】某公司生产一种新型节能电水壶并加以销售,现准备在甲城市和乙城市两个不同地方按不同销售方案进行销售,以便开拓市场. 若只在甲城市销售,销售价格为y(元/件)、月销量为x(件),y是x的一次函数,如表,
月销量x(件) | 1500 | 2000 |
销售价格y(元/件) | 185 | 180 |
成本为50元/件,无论销售多少,每月还需支出广告费72500元,设月利润为W甲(元)
(利润=销售额﹣成本﹣广告费).
若只在乙城市销售,销售价格为200元/件,受各种不确定因素影响,成本为a元/件(a为常数,40≤a≤70),当月销量为x(件)时,每月还需缴纳 x2元的附加费,设月利润为W乙(元)(利润=销售额﹣成本﹣附加费).
(1)当x=1000时,y甲=元/件,w甲=元;
(2)分别求出W甲 , W乙与x间的函数关系式(不必写x的取值范围);
(3)当x为何值时,在甲城市销售的月利润最大?若在乙城市销售月利润的最大值与在甲城市销售月利润的最大值相同,求a的值;
(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在甲城市还是在乙城市销售才能使所获月利润较大?