题目内容

【题目】某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表.已知购进60双甲种运动鞋与50双乙种运动鞋共用10000元

运动鞋价格

进价(元/双)

m

m﹣20

售价(元/双)

240

160


(1)求m的值;
(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)超过21000元,且不超过22000元,问该专卖店有几种进货方案?
(3)在(2)的条件下,专卖店准备决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?

【答案】
(1)解:依题意得:60m+50(m﹣20)=10000,

解得m=100


(2)解:设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,

根据题意得,

解不等式①得,x>

解不等式②得,x≤100,

所以,不等式组的解集是 <x≤100,

∵x是正整数,100﹣84+1=17,

∴共有17种方案


(3)解:设总利润为W,则W=(240﹣100﹣a)x+80(200﹣x)=(60﹣a)x+16000( ≤x≤100),

①当50<a<60时,60﹣a>0,W随x的增大而增大,

所以,当x=100时,W有最大值,

即此时应购进甲种运动鞋100双,购进乙种运动鞋100双;

②当a=60时,60﹣a=0,W=16000,(2)中所有方案获利都一样;

③当60<a<70时,60﹣a<0,W随x的增大而减小,

所以,当x=84时,W有最大值,

即此时应购进甲种运动鞋84双,购进乙种运动鞋116双


【解析】(1)根据“购进60双甲种运动鞋与50双乙种运动鞋共用10000元”列出方程并解答;(2)设购进甲种运动鞋x双,表示出乙种运动鞋(200﹣x)双,然后根据总利润列出一元一次不等式,求出不等式组的解集后,再根据鞋的双数是正整数解答;(3)设总利润为W,根据总利润等于两种鞋的利润之和列式整理,然后根据一次函数的增减性分情况讨论求解即可.
【考点精析】通过灵活运用一元一次不等式组的应用,掌握1、审:分析题意,找出不等关系;2、设:设未知数;3、列:列出不等式组;4、解:解不等式组;5、检验:从不等式组的解集中找出符合题意的答案;6、答:写出问题答案即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网