题目内容

【题目】如图,E、F分别是□ABCD的边BC、AD上的点,且BE=DF.

(1)求证:四边形AECF是平行四边形;
(2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.

【答案】
(1)证明:∵四边形ABCD是平行四边形,

∴AD∥BC,且AD=BC,

∴AF∥EC,

∵BE=DF,

∴AF=EC,

∴四边形AECF是平行四边形.


(2)解:∵四边形AECF是菱形,如图所示:

∴AE=EC,

∴∠1=∠2,

∵∠3=90°﹣∠2,∠4=90°﹣∠1,

∴∠3=∠4,

∴AE=BE,

∴BE=AE=CE= BC=5.


【解析】(1)利用平行四边形的性质得出对边平行且相等,结合已知,可证出AECF是平行四边形;(2)利用菱形的邻边相等的性质,可证出BE=AE=CE= BC=5.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网