题目内容

如图,DE是⊙O的直径,弦AB⊥CD,垂足为C,若AB=6,CE=1,则OC=______,CD=______.
连接OA,
∵直径DE⊥AB,且AB=6
∴AC=BC=3,
设圆O的半径OA的长为x,则OE=OD=x
∵CE=1,
∴OC=x-1,
在Rt△AOC中,根据勾股定理得:
x2-(x-1)2=32,化简得:x2-x2+2x-1=9,
即2x=10,
解得:x=5
所以OE=5,则OC=OE-CE=5-1=4,CD=OD+OC=9.
故答案为:4;9
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网