题目内容

【题目】如图,在边长为4的正方形ABCD中,PBC边上一动点(不含BC两点),将△ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将△CMP沿直线MP翻折后,点C落在直线PE上的点F处,直线PECD于点N,连接MANA.则以下结论中正确的有(

①△CMP∽△BPA

四边形AMCB的面积最大值为10

PBC中点时,AE为线段NP的中垂线;

线段AM的最小值为2

⑤当ABP≌△ADN时,BP= 4-4

A. 1B. 2C. 4D. 3

【答案】D

【解析】

根据相似三角形的判定和性质逐个分析即可. AB=CB=DC=AD=4,∠C=B=90°,得△CMP∽△BPA,故①正确;当x=2时,四边形AMCB面积最大值为10,故②正确;NE≠EP,故③错误;AM的最小值==5,故④错误;PB=故⑤正确.

∵∠APB=APE,∠MPC=MPN,∵∠CPN+NPB=180°,∴2NPM+2APE=180°,∴∠MPN+APE=90°,∴∠APM=90°,∵∠CPM+APB=90°,∠APB+PAB=90°,∴∠CPM=PAB,∵四边形ABCD是正方形,∴AB=CB=DC=AD=4,∠C=B=90°,∴△CMP∽△BPA.故①正确,设PB=x,则CP=4x,∵△CMP∽△BPA,∴,∴CM=x4x),∴S四边形AMCB=[4+x4x]×4==,∴x=2时,四边形AMCB面积最大值为10,故②正确,当PB=PC=PE=2时,设ND=NE=y,在RtPCN中,解得,∴NE≠EP,故③错误,作MGABG,∵AM==,∴AG最小时AM最小,∵AG=ABBG=ABCM=4x4x=,∴x=1时,AG最小值=3,∴AM的最小值==5,故④错误.∵△ABP≌△ADN时,∴∠PAB=DAN=22.5°,在AB上取一点K使得AK=PK,设PB=z,∴∠KPA=KAP=22.5°.∵∠PKB=KPA+KAP=45°,∴∠BPK=BKP=45°,∴PB=BK=zAK=PK=z,∴z+z=4,∴z=,∴PB=故⑤正确.

故选:C

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网