题目内容

【题目】如图1,在△ABC中,∠ABC=90°,AO是△ABC的角平分线,以O为圆心,OB为半径作圆交BC于点D

1)求证:直线AC是⊙O的切线;

2)在图2中,设AC与⊙O相切于点E,连结BE,如果AB=4tanCBE=

①求BE的长;②求EC的长.

【答案】(1)见解析;(2)①;②.

【解析】

(1)作作OE⊥AC,由AO是∠BAC的角平分线,得到∠BAO=∠EAO,判断出△ABO≌△AEO(AAS),得到OE=OB,所以直线AC是⊙O的切线;

(2)先利用AE与⊙O相切于点E, AB=AE=4,再用三角函数求出OB,BC,然后用三角形相似,得到BC=2CE, ,用勾股定理求出CD,最后用切割线定理即可

证明:(1)如图1,

作OE⊥AC, ∴∠OEA=90°,

∵∠ABC=90,∴∠OEA=∠ABC,

∵AO是△ABC的角平分线,∴∠BAO=∠EAO,

在△ABO和△AEO中,

∴△ABO≌△AEO(AAS),∴OE=OB,

∵OB是⊙O的半径,∴OE是⊙O的半径, ∴直线AC是⊙O的切线;

(2)①如图2,∵∠ABO=90°,

∴AB切⊙O于B,

∵AE与⊙O相切于点E, ∴AB=AE=4,

∵AO是△ABC的角平分线, ∴AO⊥BE, ∴∠BAO+∠ABE=90°,

∵∠CBE+∠ABE=90°, ∴∠BAO=∠CBE,

∵tan∠CBE= , ∴tan∠BAO=

在Rt△ABO中,AB=4,tan∠BAO= , ∴ , ∴BD=2OB=4,

∵AB是⊙O的直径, ∴∠BED=90°,

又∵tan∠CBE= , ∴BE=2DE,

在Rt△BDE中, ∵BE2+DE2=BD2, ∴ , 解得

②∵AC是⊙O的切线, ∴∠CED=∠CBE,

∵∠DCE=∠ECB,∴△CDE∽△CEB, ∴

又∵tan∠CBE= , ∴BC=2CE,

∵BD=BC﹣CD ∴ , 解得

练习册系列答案
相关题目

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网