题目内容
【题目】如图,在平面直角坐标系中,以点为圆心画圆,与轴交于;两点,与轴交于两点,当时,的取值范围是____________.
【答案】
【解析】
作ME⊥CD于E,MF⊥AB于F,连接MA、MC.当CD=6和CD=时在中求出半径MC,然后在 中可求的值,于是范围可求.
解:如图1,当CD=6时,作ME⊥CD于E,MF⊥AB于F,连接MA、MC,
∵,
∴ME=4,MF=3,
∵ME⊥CD, CD=6,
∴CE=3,
∴,
∴MA=MC=5,
∵MF⊥AB,
∴==,
如图2,当CD=时,作ME⊥CD于E,MF⊥AB于F,连接MA、MC,
∵,
∴ME=4,MF=3,
∵ME⊥CD, CD=,
∴CE=,
∴,
∴MA=MC=8,
∵MF⊥AB,
∴==,
综上所述,当时, .
故答案是:.
练习册系列答案
相关题目