题目内容
【题目】如图,抛物线y=ax2+c(a≠0)经过C(2,0),D(0,﹣1)两点,并与直线y=kx交于A、B两点,直线l过点E(0,﹣2)且平行于x轴,过A、B两点分别作直线l的垂线,垂足分别为点M、N.
(1)求此抛物线的解析式;
(2)求证:AO=AM;
(3)探究:
①当k=0时,直线y=kx与x轴重合,求出此时的值;
②试说明无论k取何值,的值都等于同一个常数.
【答案】解:(1)y=x2﹣1
(2)详见解析
(3)详见解析
【解析】
(1)把点C、D的坐标代入抛物线解析式求出a、c,即可得解。
(2)根据抛物线解析式设出点A的坐标,然后求出AO、AM的长,即可得证。
(3)①k=0时,求出AM、BN的长,然后代入计算即可得解;
②设点A(x1,x12﹣1),B(x2,x22﹣1),然后表示出,再联立抛物线与直线解析式,消掉未知数y得到关于x的一元二次方程,利用根与系数的关系表示出x1+x2,x12,并求出x12+x22,x12x22,然后代入进行计算即可得解。
解:(1)∵抛物线y=ax2+c(a≠0)经过C(2,0),D(0,﹣1),
∴,解得。
∴抛物线的解析式为y=x2﹣1。
(2)证明:设点A的坐标为(m,m2﹣1),
则。
∵直线l过点E(0,﹣2)且平行于x轴,∴点M的纵坐标为﹣2。
∴AM=m2﹣1﹣(﹣2)=m2+1。
∴AO=AM。
(3)①k=0时,直线y=kx与x轴重合,点A、B在x轴上,
∴AM=BN=0﹣(﹣2)=2,
∴。
②k取任何值时,设点A(x1,x12﹣1),B(x2,x22﹣1),
则。
联立,消掉y得,x2﹣4kx﹣4=0,
由根与系数的关系得,x1+x2=4k,x1x2=﹣4,
∴x12+x22=(x1+x2)2﹣2x1x2=16k2+8,x12x22=16。
∴。
∴无论k取何值,的值都等于同一个常数1。
【题目】某大型超市投入15000元资金购进、两种品牌的矿泉水共600箱,矿泉水的成本价和销售价如下表所示:
类别/单价 | 成本价(元/箱) | 销售价(元/箱) |
A品牌 | 20 | 32 |
B品牌 | 35 | 50 |
(1)该大型超市购进、品牌矿泉水各多少箱?
(2)全部销售完600箱矿泉水,该超市共获得多少利润?