题目内容

(2011四川泸州,17,3分)如图,半径为2的圆内接等腰梯形ABCD,它的下底AB是圆的直径,上底CD的端点在圆周上,则该梯形周长的最大值是       
18.
答案为:10
根据圆心为O,则OA=OB=OC=OD=2,设腰长为x,设上底长是2b,利用勾股定理得出,则x2-(2-b)2=R2-b2=CP2,再利用二次函数最值求出即可.
解:圆心为O,连接OD,OC,过O作OE⊥CD,过C作CP⊥OB,
∴E为DC的中点,DE=CE=CD=b,
∵等腰梯形ABCD,
∴DC∥AB,OE⊥CD,
∴OE⊥AB,
∴∠CEO=∠EOP=∠OPC=90°,
∴四边形EOPC为矩形,
∴EC=OP,

则OA=OB=OC=OD=2,设腰长为x,
设上底长是2b,过C作直径的垂线,垂足是P,
则CP2=OC2-OP2=CB2-PB2
即x2-(2-b)2=22-b2
整理得b=2-
所以y=4+2x+2b=4+2x+4-+2x+8,
∴该梯形周长的最大值是:
故答案为:10.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网