题目内容
【题目】⊙O是△ABC的外接圆,AB是直径,过 的中点P作⊙O的直径PG,与弦BC相交于点D,连接AG、CP、PB.
(1)如图1,求证:AG=CP;
(2)如图2,过点P作AB的垂线,垂足为点H,连接DH,求证:DH∥AG;
(3)如图3,连接PA,延长HD分别与PA、PC相交于点K、F,已知FK=2,△ODH的面积为2 ,求AC的长.
【答案】
(1)证明:∵过 的中点P作⊙O的直径PG,
∴CP=PB,
∵AB,PG是相交的直径,
∴AG=PB,
∴AG=CP
(2)证明:如图 2,连接BG
∵AB、PG都是⊙O的直径,
∴四边形AGBP是矩形,
∴AG∥PB,AG=PB,
∵P是弧BC的中点,
∴PC=BC=AG,
∴弧AG=弧CP,
∴∠APG=∠CAP,
∴AC∥PG,
∴PG⊥BC,
∵PH⊥AB,
∴∠BOD=90°=∠POH,
在△BOD和△POH中,
,
∴△BOD≌△POH,
∴OD=OH,
∴∠ODH= (180°﹣∠BOP)=∠OPB,
∴DH∥PB∥AG
(3)解:如图3,作CM⊥AP于M,ON⊥DH于N,
∴∠HON= ∠BOP= ∠COP=∠CAP,
∴△HON∽△CAM,
∴ ,
作PQ⊥AC于Q,
∴四边形CDPQ是矩形,
△APH与△APQ关于AP对称,
∴HQ⊥AP,
由(1)有:HK⊥AP,
∴点K在HQ上,
∴CK=PK,
∴PK是△CMP的中位线,
∴CM=2FK=4,MF=PF,
∵CM⊥AP,HK⊥AP,
∴CM∥HK,
∴∠BCM+∠CDH=180°,
∵∠BCM=∠CAP=∠BAP=∠PHK=∠MHK,
∴∠MHK+∠CDH=180°,
∴四边形CDHM是平行四边形,
∴DH=CM=4,DN=HN=2,
∵S△ODH= DH×ON= ×4×ON=2 ,
∴ON= ,
∴OH= =5,
∴AC= =10
【解析】(1)利用等弧所对的圆周角相等即可求解;(2)利用等弧所对的圆周角相等,得到角相等∠APG=∠CAP,判断出△BOD≌△POH,再得到角相等,从而判断出线平行;(3)由三角形相似,得出比例式,△HON∽△CAM, ,再判断出四边形CDHM是平行四边形,最后经过计算即可求解.