题目内容
(12分)已知,边长为5的正方形ABCO在如图所示的直角坐标系中,点
M(t,0)为x轴上一动点,过A作直线MC的垂线交y轴于点N.
(1)当t=2时,求直线MC的解析式;
(2)设△AMN的面积为S,当S=3时,求t的值;
(3)取点P(1,y),如果存在以M、N、C、P为顶点的四边形是等腰梯形,当t<0时,甲同学说:y与t应同时满足方程t2-yt-5=0和y2-2t2-10y+26=0;乙同学说:y与t应同时满足方程t2-yt-5=0和y2+8t-24=0,你认为谁的说法正确,并说明理由.再直接写出t>0时满足题意的一个点P的坐标.
M(t,0)为x轴上一动点,过A作直线MC的垂线交y轴于点N.
(1)当t=2时,求直线MC的解析式;
(2)设△AMN的面积为S,当S=3时,求t的值;
(3)取点P(1,y),如果存在以M、N、C、P为顶点的四边形是等腰梯形,当t<0时,甲同学说:y与t应同时满足方程t2-yt-5=0和y2-2t2-10y+26=0;乙同学说:y与t应同时满足方程t2-yt-5=0和y2+8t-24=0,你认为谁的说法正确,并说明理由.再直接写出t>0时满足题意的一个点P的坐标.
(1) …………(2分)
(2)S=t2+t(t>0)……(1分) t=1……(1分)
S=-t2-t(-5<t<0)…(1分) t=-2,t=-3 (1分)
S=t2+t(t<-5)……(1分) t=-6……(1分)
(3)都正确,作PH⊥y轴,则△PHN∽△MOC, 得 ,
所以 t2-yt-5=0, 满足PN∥CM …………(1分)
由Rt△PCH得 1+(y-5)2=2t2,
所以 y2-2t2-10y+26=0,满足PC=MN, 故甲正确……(1分)
直线x=1与x轴交于E,由Rt△PME得,
(5-t)2=y2+(1-t)2
所以 y2+8t-24=0,满足PM=CN, 故乙正确……(1分)
(每个方程1分)
P(1,6)…………(1分)
(2)S=t2+t(t>0)……(1分) t=1……(1分)
S=-t2-t(-5<t<0)…(1分) t=-2,t=-3 (1分)
S=t2+t(t<-5)……(1分) t=-6……(1分)
(3)都正确,作PH⊥y轴,则△PHN∽△MOC, 得 ,
所以 t2-yt-5=0, 满足PN∥CM …………(1分)
由Rt△PCH得 1+(y-5)2=2t2,
所以 y2-2t2-10y+26=0,满足PC=MN, 故甲正确……(1分)
直线x=1与x轴交于E,由Rt△PME得,
(5-t)2=y2+(1-t)2
所以 y2+8t-24=0,满足PM=CN, 故乙正确……(1分)
(每个方程1分)
P(1,6)…………(1分)
略
练习册系列答案
相关题目