题目内容

【题目】如图所示,⊙O的半径为4,点A是⊙O上一点,直线l过点A;P是⊙O上的一个动点(不与点A重合),过点PPBl于点B,交⊙O于点E,直径PD延长线交直线l于点F,点A的中点.

(1)求证:直线l是⊙O的切线;

(2)若PA=6,求PB的长.

【答案】(1)证明见解析;(2)PB=

【解析】

(1)如图,连接DE,OA,根据垂径定理证明OABF即可;

(2)如图,作OHPAH,只要证明AOH∽△PAB,可得,即可解决问题.

(1)如图,连接DE,OA,

PD是直径,

∴∠DEP=90°,

PBFB,

∴∠DEP=FBP,

DEBF,

OADE,

OABF,

∴直线l是⊙O的切线

(2)如图,作OHPAH,

OA=OP,OHPA,

AH=PH=3,

OAPB,

∴∠OAH=APB,

∵∠AHO=ABP=90°,

∴△AOH∽△PAB,

PB=

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网