题目内容
【题目】如图,在⊙O中,C,D分别为半径OB,弦AB的中点,连接CD并延长,交过点A的切线于点E.
(1)求证:AE⊥CE.
(2)若AE=,sin∠ADE=,求⊙O半径的长.
【答案】(1)证明见解析;(2).
【解析】
(1)连接OA,如图,利用切线的性质得∠OAE=90°,再证明CD为△AOB的中位线得到CD∥OA.则可判断AE⊥CE;
(2)连接OD,如图,利用垂径定理得到OD⊥AB,再在Rt△AED中利用正弦定义计算出AD=3,接着证明∠OAD=∠ADE.从而在Rt△OAD中有sin∠OAD=,设OD=x,则OA=3x,利用勾股定理可计算出AD=2x,从而得到2x=3,然后解方程求出x即可得到⊙O的半径长.
(1)证明:连接OA,如图,
∵OA是⊙O的切线,
∴AE⊥AB,
∴∠OAE=90°,
∵C,D分别为半径OB,弦AB的中点,
∴CD为△AOB的中位线.
∴CD∥OA.
∴∠E=90°.
∴AE⊥CE;
(2)连接OD,如图,
∵AD=CD,
∴OD⊥AB,
∴∠ODA=90°,
在Rt△AED中,sin∠ADE=,
∴AD=3,
∵CD∥OA,
∴∠OAD=∠ADE.
在Rt△OAD中,sin∠OAD=,
设OD=x,则OA=3x,
∴AD==2x,
即2x=3,解得x=3,
∴OA=3x=,
即⊙O的半径长为.
【题目】数学活动课上,老师提出问题:如图,有一张长4dm,宽3dm的长方形纸板,在纸板的四个角裁去四个相同的小正方形,然后把四边折起来,做成一个无盖的盒子,问小正方形的边长为多少时,盒子的体积最大.
下面是探究过程,请补充完整:
(1)设小正方形的边长为xdm,体积为ydm3,根据长方体的体积公式得到y和x的关系式: ;
(2)确定自变量x的取值范围是 ;
(3)列出y与x的几组对应值.
x/dm | … |
|
|
|
|
| 1 |
| … | |||
y/dm3 | … | 1.3 | 2.2 | 2.7 | 3.0 | 2.8 | 2.5 | 1.5 | 0.9 | … |
(说明:表格中相关数值保留一位小数)
(4)在下面的平面直角坐标系xOy中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(5)结合画出的函数图象,解决问题:当小正方形的边长约为 dm时,盒子的体积最大,最大值约为 dm3.