题目内容
【题目】阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J.Napier,1550年-1617年),纳皮尔发明对数是在指数概念建立之前,直到18世纪瑞士数学家欧拉(Euler,1707年-1783年)才发现指数与对数之间的联系.对数的定义:一般地,若,则叫做以为底的对数,记作.比如指数式可以转化为,对数式可以转化为.我们根据对数的定义可得到对数的一个性质:.理由如下:设,,所以,,所以,由对数的定义得,又因为,所以.解决以下问题:
(1)将指数转化为对数式: .
(2)仿照上面的材料,试证明:
(3)拓展运用:计算 .
【答案】(1);(2)见解析;(3)2
【解析】
(1)根据题意可以把指数式53=125写成对数式;
(2)先设logaM=x,logaN=y,根据对数的定义可表示为指数式为:M=ax,N=ay,计算的结果,同理由所给材料的证明过程可得结论;
(3)根据公式:loga(MN)=logaM+logaN和的逆用,将所求式子表示为:log3(2×18÷4),计算可得结论.
(1)∵一般地,若ax=N(a>0,a≠1),那么x叫做以a为底N的对数,记作:记作:x=logaN.
∴3=log5125,
故答案为:3=log5125;
(2)证明:设,
∴,,
∴,
由对数的定义得
又∵,
∴
(3) log3(2×18÷4)= log39=2.
故答案为:2.
【题目】某医药研究所研发了一种新药,试验药效时发现:1.5小时内,血液中含药量y(微克)与时间x(小时)的关系可近似地用二次函数y=ax2+bx表示;1.5小时后(包括1.5小时),y与x可近似地用反比例函数y=(k>0)表示,部分实验数据如表:
时间x(小时) | 0.2 | 1 | 1.8 | … |
含药量y(微克) | 7.2 | 20 | 12.5 | … |
(1)求a、b及k的值;
(2)服药后几小时血液中的含药量达到最大值?最大值为多少?
(3)如果每毫升血液中含药量不少于10微克时治疗疾病有效,那么成人按规定剂量服用该药一次后能维持多长的有效时间.(≈1.41,精确到0.1小时)