题目内容
【题目】某医药研究所研发了一种新药,试验药效时发现:1.5小时内,血液中含药量y(微克)与时间x(小时)的关系可近似地用二次函数y=ax2+bx表示;1.5小时后(包括1.5小时),y与x可近似地用反比例函数y=(k>0)表示,部分实验数据如表:
时间x(小时) | 0.2 | 1 | 1.8 | … |
含药量y(微克) | 7.2 | 20 | 12.5 | … |
(1)求a、b及k的值;
(2)服药后几小时血液中的含药量达到最大值?最大值为多少?
(3)如果每毫升血液中含药量不少于10微克时治疗疾病有效,那么成人按规定剂量服用该药一次后能维持多长的有效时间.(≈1.41,精确到0.1小时)
【答案】(1)a=﹣20,b=40,k=22.5;(2)服药后1小时血液中的含药量达到最大值,最大值为20微克;(3)成人按规定剂量服用该药一次后能维持2.0小时的有效时间.
【解析】
(1)根据表格信息代入数值列方程组求解即可;
(2)由(1)得到y=﹣20x2+40x,化为顶点式即可得到结果;
(3)令y=10求出x的值就是所求的结果;
(1)设1.5小时内,血液中含药量y(微克)与时间x(小时)的关系为y=ax2+bx,
根据表格得:,
解得:a=﹣20,b=40,
1.5小时后(包括1.5小时),y与x可近似地用反比例函数y=(k>0),根据表格得:
k=1.8×12.5=22.5,
∴a=﹣20,b=40,k=22.5;
(2)由(1)知y=﹣20x2+40x,
∴y=﹣20(x﹣1)2+20,
∴服药后1小时血液中的含药量达到最大值,最大值为20微克;
(3)当y=10时,10=﹣20x2+40x,或10=,
解得:x=1﹣或x=1+(x>1.5,不合题意舍去),x=2.25,
∴成人按规定剂量服用该药一次后能维持2.25﹣(1﹣)≈2.0小时的有效时间.