题目内容
【题目】如图,在ABCD中,过B作BE⊥AD于点E,过点C作CF⊥BD分别与BD、BE交于点G、F,连接GE,已知AB=BD,CF=AB.
(1)若∠ABE=30°,AB=6,求△ABE的面积;
(2)求证:GE=BG.
【答案】(1);(2)见解析
【解析】
(1)由含30°角直角三角形性质得出AE=AB=3,由勾股定理得出BE==3,由三角形面积公式即可得出结果;
(2)由平行四边形的性质得出AD=BC,AD∥BC,则∠ADB=∠CBD,证出∠BFC=∠BDE,得出∠CBG=∠BFG,由AAS证明△DEB≌△FBC得出BF=DE,BE=BC=2DE,设DE=x,则BE=BC=AD=2x,CF=BD=AB=x,S△BCF=CFBG=BFBC,求得BG=x,DG=x,过G作GH⊥AD于H,由sin∠EDG==,求得GH=x,由cos∠EDG==,求得DH=x,EH=DE﹣DH=x,由勾股定理求出EG==,即可得出结论.
(1)解:∵BE⊥AD,∠ABE=30°,
∴AE=AB=3,BE===3,
∴S△ABE=AEBE=×3×3=;
(2)证明:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∴∠ADB=∠CBD,
∵∠FGB=∠BED=90°,∠FBG=∠DBE
∴∠BFC=∠BDE,
∴∠CBG=∠BFG,
∵∠CGB=∠BGF=90°,
∴∠BCF=∠DBE,
∴∠CBF=∠BCG+∠CBG=90°,
∵BE⊥AD,AB=BD,
∴AE=DE,
∵AB=BD,CF=AB,
∴CF=BD,
在△DEB和△FBC中,,
∴△DEB≌△FBC(AAS),
∴BF=DE,BE=BC=2DE,
设DE=x,则BE=BC=AD=2x,CF=BD=AB=x,
S△BCF=CFBG=BFBC,
即:xBG=x2x,
∴BG=x,
∴DG=x﹣x=x,
过G作GH⊥AD于H,如图所示:
sin∠EDG==,即:=,
∴GH=x,
cos∠EDG==,即:=,
∴DH=x,
EH=DE﹣DH=x﹣x=x,
∴EG===,
∴==,
∴EG=BG.