题目内容
【题目】如图,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=8cm.BC=4cm,CD=5cm.动点P从点B开始沿折线BC﹣CD﹣DA以1cm/s的速度运动到点A.设点P运动的时间为t(s),△PAB面积为S(cm2).
(1)当t=2时,求S的值;
(2)当点P在边DA上运动时,求S关于t的函数表达式;
(3)当S=12时,求t的值.
【答案】
(1)解:∵动点P以1cm/s的速度运动,
∴当t=2时,BP=2cm,
∴S的值= ABBP= ×8×2=8cm2;
(2)解:过D作DH⊥AB,过P′作P′M⊥AB,
∴P′M∥DH,
∴△AP′M∽△ADH,
∴ ,
∵AB=8cm,CD=5cm,
∴AH=AB﹣DC=3cm,
∵BC=4cm,
∴AD= =5cm,
又∵A′P=14﹣t,
∴ ,
∴P′M= ,
∴S= ABP′M= ,
即S关于t的函数表达式S= ;
(3)解:由题意可知当P在CD上运动时,S= AB×BC= ×8×4=16cm2,
所以当S=12时,P在BC或AD上,
当P在BC上时,12= ×8t,解得:t=3;
当P在AD上时,12= ,解得:t= .
∴当S=12时,t的值为3或 .
【解析】(1)当t=2时,可求出P运动的路程即BP的长,再根据三角形的面积公式计算即可;(2)当点P在DA上运动时,过D作DH⊥AB,P′M⊥AB,求出P′M的值即为△PAB中AB边上的高,再利用三角形的面积公式计算即可;(3)当S=12时,则P在BC或AD上运动,利用(1)和(2)中的面积和高的关系求出此时的t即可,
【考点精析】本题主要考查了直角梯形的相关知识点,需要掌握一腰垂直于底的梯形是直角梯形才能正确解答此题.
【题目】已知一次函数y1=kx+m(k≠0)和二次函数y2=ax2+bx+c(a≠0)的自变量和对应函数值如表:
x | … | ﹣1 | 0 | 2 | 4 | … |
y1 | … | 0 | 1 | 3 | 5 | … |
x | … | ﹣1 | 1 | 3 | 4 | … |
y2 | … | 0 | ﹣4 | 0 | 5 | … |
当y2>y1时,自变量x的取值范围是( )
A.x<﹣1
B.x>4
C.﹣1<x<4
D.x<﹣1或x>4
【题目】某校课外兴趣小组在本校学生中开展“感动中国2013年度人物”先进事迹知晓情况专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为A、B、C、D四类.其中,A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”,D类表示“不太了解”,划分类别后的数据整理如下表:
类别 | A | B | C | D |
频数 | 30 | 40 | 24 | b |
频率 | a | 0.4 | 0.24 | 0.06 |
(1)表中的a= , b=;
(2)根据表中数据,求扇形统计图中类别为B的学生数所对应的扇形圆心角的度数;
(3)若该校有学生1000名,根据调查结果估计该校学生中类别为C的人数约为多少?
【题目】甲、乙两人在5次打靶测试中命中的环数如下: 甲:8,8,7,8,9
乙:5,9,7,10,9
(1)填写下表:
平均数 | 众数 | 中位数 | 方差 | |
甲 | 8 | 8 | 0.4 | |
乙 | 9 | 3.2 |
(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?
(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差 . (填“变大”、“变小”或“不变”).
【题目】为了了解某市初三年级学生体育成绩(成绩均为整数),随机抽取了部分学生的体育成绩并分段(A:20.5~22.5;B:22.5~24.5;C:24.5~26.5;D:26.5~28.5;E:28.5~30.5)统计如下体育成绩统计表
分数段 | 频数/人 | 频率 |
A | 12 | 0.05 |
B | 36 | a |
C | 84 | 0.35 |
D | b | 0.25 |
E | 48 | 0.20 |
根据上面提供的信息,回答下列问题:
(1)在统计表中,a= , b= , 并将统计图补充完整;
(2)小明说:“这组数据的众数一定在C中.”你认为小明的说法正确吗?(填“正确”或“错误”);
(3)若成绩在27分以上(含27分)定为优秀,则该市今年48000名初三年级学生中体育成绩为优秀的学生人数约有多少?