题目内容
【题目】如图1,已知点A(2,0),B(0,4),∠AOB的平分线交AB于C,一动点P从O点出发,以每秒2个单位长度的速度,沿y轴向点B作匀速运动,过点P且平行于AB的直线交x轴于Q,作P、Q关于直线OC的对称点M、N.设P运动的时间为t(0<t<2)秒.
(1)求C点的坐标,并直接写出点M、N的坐标(用含t的代数式表示);
(2)设△MNC与△OAB重叠部分的面积为S.
①试求S关于t的函数关系式;
②在图2的直角坐标系中,画出S关于t的函数图象,并回答:S是否有最大值?若有,写出S的最大值;若没有,请说明理由.
【答案】
(1)
解:如答图1,过点C作CF⊥x轴于点F,CE⊥y轴于点E,
由题意,易知四边形OECF为正方形,设正方形边长为x.
∵CE∥x轴,
∴ ,即 ,解得x= .
∴C点坐标为( , );
∵PQ∥AB,
∴ ,即 ,
∴OP=2OQ.
∵P(0,2t),
∴Q(t,0).
∵对称轴OC为第一象限的角平分线,
∴对称点坐标为:M(2t,0),N(0,t).
(2)
解:①当0<t≤1时,如答图2﹣1所示,点M在线段OA上,重叠部分面积为S△CMN.
S△CMN=S四边形CMON﹣S△OMN
=(S△COM+S△CON)﹣S△OMN
=( 2t× + t× )﹣ 2tt
=﹣t2+2t;
当1<t<2时,如答图2﹣2所示,点M在OA的延长线上,设MN与AB交于点D,则重叠部分面积为S△CDN.
设直线MN的解析式为y=kx+b,将M(2t,0)、N(0,t)代入得 ,
解得 ,
∴y=﹣ x+t;
同理求得直线AB的解析式为:y=﹣2x+4.
联立y=﹣ x+t与y=﹣2x+4,求得点D的横坐标为 .
S△CDN=S△BDN﹣S△BCN
= (4﹣t) ﹣ (4﹣t)×
= t2﹣2t+ .
综上所述,S= .
②画出函数图象,如答图2﹣3所示:
观察图象,可知当t=1时,S有最大值,最大值为1.
【解析】(1)如答图1,作辅助线,由比例式求出点D的坐标;(2)①所求函数关系式为分段函数,需要分类讨论.答图2﹣1,答图2﹣2表示出运动过程中重叠部分(阴影)的变化,分别求解;②画出函数图象,由两段抛物线构成.观察图象,可知当t=1时,S有最大值.
【考点精析】解答此题的关键在于理解二次函数的性质的相关知识,掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.
【题目】为了解“数学思想作为对学习数学帮助有多大?”一研究员随机抽取了一定数量的高校大一学生进行了问卷调查,并将调查得到的数据用下面的扇形图和下表来表示(图、表都没制作完成).
选项 | 帮助很大 | 帮助较大 | 帮助不大 | 几乎没有帮助 |
人数 | a | 543 | 269 | b |
根据图、表提供的信息.
(1)请问:这次共有多少名学生参与了问卷调查?
(2)算出表中a、b的值. (注:计算中涉及到的“人数”均精确到1)