题目内容

【题目】如图,线段AB的长为2,C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE,那么DE长的最小值是

【答案】1
【解析】解:如图,连接DE. 设AC=x,则BC=2﹣x,
∵△ACD和△BCE分别是等腰直角三角形,
∴∠DCA=45°,∠ECB=45°,DC= ,CE= (2﹣x),
∴∠DCE=90°,
故DE2=DC2+CE2= x2+ (2﹣x)2=x2﹣2x+2=(x﹣1)2+1,
当x=1时,DE2取得最小值,DE也取得最小值,最小值为1.
故答案为:1.

设AC=x,则BC=2﹣x,然后分别表示出DC、EC,继而在RT△DCE中,利用勾股定理求出DE长度的表达式,利用函数的知识进行解答即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网