题目内容
【题目】综合与实践
问题情境:
在综合与实践课上,老师让同学们以“等腰三角形的剪拼”为主题开展数学活动.如图1,在△ABC中,AB=AC=10cm,BC=16cm.将△ABC沿BC边上的中线AD剪开,得到△ABD和△ACD.
操作发现:
(1)乐学小组将图1中的△ACD以点D为旋转中心,按逆时针方向旋转,使得A'C'⊥AD,得到图2,A'C'与AB交于点E,则四边形BEC'D的形状是 .
(2)缜密小组将图1中的△ACD沿DB方向平移,A'D'与AB交于点M,A'C'与AD交于点N,得到图3,判断四边形MNDD'的形状,并说明理由.
实践探究:
(3)缜密小组又发现,当(2)中线段DD'的长为acm时,图3中的四边形MNDD'会成为正方形,求a的值.
(4)创新小组又把图1中的△ACD放到如图4所示的位置,点A的对应点A'与点D重合,点D的对应点D'在BD的延长线上,再将△A'C'D'绕点D逆时针旋转到如图5所示的位置,DD'交AB于点P,DC'交AB于点Q,DP=DQ,此时线段AP的长是 cm.
【答案】(1)菱形;(2)四边形MNDD'是矩形,理由见解析;(3);(4)
【解析】
操作发现:
(1)由等腰三角形的性质可得∠B=∠C,BD=CD=8cm,∠BAD=∠CAD,由余角的性质可得∠ADC'=∠BAD,可得AB∥C'D,可证四边形BDC'E是平行四边形,且BD=C'D,可证四边形BEC'D是菱形;
(2)由“ASA”可证△MDB'≌△NDC',可得DN=MD',由平移性质可得MD'∥DN,可证四边形MNDD'是平行四边形,且∠BD'M=90°,可证四边形MNDD'是矩形;
实践探究:
(3)由正方形的性质可得D'M∥DN,D'M=D'D=acm,由相似三角形的性质可求解;
(4)过点D作DG⊥AB于点G,通过证明△DQP∽△AQD,可求AQ=AD=6,通过证明△DGA∽△BDA,可得,可求AG的长,即可求解.
解:操作发现:
(1)如图1:∵AB=AC=10cm,BC=16cm.
∴∠B=∠C,BD=CD=8cm,∠BAD=∠CAD,
∵△ACD以点D为旋转中心,按逆时针方向旋转,
∴C'D=BD,
∵AD⊥BD,A'C'⊥AD,
∴A'C'∥BD,∠ADC'=90°﹣∠C',
∴∠ADC'=90°﹣∠B,且∠BAD=90°﹣∠B,
∴∠ADC'=∠BAD,
∴AB∥C'D,
∴四边形BDC'E是平行四边形,
∵BD=C'D,
∴四边形BEC'D是菱形,
故答案为:菱形;
(2)如图3,四边形MNDD'是矩形,
理由如下:
∵BD=CD,
∴BD'=CD,且∠B=∠C',∠MD'B=∠NDC'
∴△MDB'≌△NDC'(ASA)
∴MD'=ND,
∵△ACD沿DB方向平移,
∴MD'∥DN,
∴四边形MNDD'是平行四边形,
∵∠BD'M=90°,
∴四边形MNDD'是矩形;
(3)由图形(1)可得AB=10cm,BD=8cm,
∴AD===6cm,
∵四边形MNDD'为正方形,
∴D'M∥DN,D'M=D'D=acm,
∴△BD'M∽△BDA,
∴,
∴,
∴a=;
(4)如图5,过点D作DG⊥AB于点G,
∵DP=DQ,
∴∠DQP=∠DPQ,QG=PG,
又∵∠A=∠PDQ,
∴△DQP∽△AQD,
∴∠ADQ=∠DPQ,
∴∠ADQ=∠AQD,
∴AQ=AD=6,
∵∠A=∠A,∠DGA=∠BDA,
∴△DGA∽△BDA,
∴,
∴,
∴AG=,
∴GQ=AQ﹣AG=6﹣=,
∴PG=QG=,
∴AP=AG﹣PG=﹣=,
故答案为:.
【题目】如图,C是的一定点,D是弦AB上的一定点,P是弦CB上的一动点.连接DP,将线段PD绕点P顺时针旋转得到线段.射线与交于点Q.已知,设P,C两点间的距离为xcm,P,D两点间的距离,P,Q两点的距离为.
小石根据学习函数的经验,分别对函数,,随自变量x的变化而变化的规律进行了探究,下面是小石的探究过程,请补充完整:
(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了,,与x的几组对应值:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
/cm | 4.29 | 3.33 | 1.65 | 1.22 | 1.50 | 2.24 | |
/cm | 0.88 | 2.84 | 3.57 | 4.04 | 4.17 | 3.20 | 0.98 |
(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数据所对应的点,,并画出函数,的图象;
(3)结合函数图象,解决问题:连接DQ,当△DPQ为等腰三角形时,PC的长度约为_____cm.(结果保留一位小数)
【题目】为了更好的治理西流湖水质,保护环境,市治污公司决定购买 10 台污水处理设备.现有 A、B 两种型号的设备,其中每台的价格,月处理污水量如下表:
A 型 | B 型 | |
价格(万元/台) | a | b |
处理污水量(吨/月) | 240 | 200 |
经调查:购买一台 A 型设备比购买一台 B 型设备多 2 万元,购买 2 台 A 型设备比购买 3 台 B 型设备少 6 万元.
(1)求 a,b 的值;
(2)经预算:市治污公司购买污水处理设备的资金不超过 105 万元,你认为该公司 有哪几种购买方案;
(3)在(2)问的条件下,若每月要求处理西流湖的污水量不低于 2040 吨,为了节 约资金,请你为治污公司设计一种最省钱的购买方案.