题目内容
【题目】如图,正方形ABCD的对角线AC上有一点E,且CE=4AE,点F在DC的延长线上,连接EF,过点E作EG⊥EF,交CB的延长线于点G,连接GF并延长,交AC的延长线于点P,若AB=5,CF=2,则线段EP的长是_____.
【答案】
【解析】
如图,作FH⊥PE于H.利用勾股定理求出EF,再证明△CEF∽△FEP,可得EF2=ECEP,由此即可解决问题.
如图,作FH⊥PE于H.
∵四边形ABCD是正方形,AB=5,
∴AC=5,∠ACD=∠FCH=45°,
∵∠FHC=90°,CF=2,
∴CH=HF=,
∵CE=4AE,
∴EC=4,AE=,
∴EH=5,
在Rt△EFH中,EF2=EH2+FH2=(5)2+()2=52,
∵∠GEF=∠GCF=90°,
∴E,G,F,C四点共圆,
∴∠EFG=∠ECG=45°,
∴∠ECF=∠EFP=135°,
∵∠CEF=∠FEP,
∴△CEF∽△FEP,
∴,
∴EF2=ECEP,
∴EP=
故答案为:.
【题目】某校八年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作.已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.
小丽:如果以10元/千克的价格销售,那么每天可售出300千克.
小强:如果每千克的利润为3元,那么每天可售出250千克.
小红:如果以13元/千克的价格销售,那么每天可获取利润750元.
【利润=(销售价-进价)销售量】
(1)请根据他们的对话填写下表:
销售单价x(元/kg) | 10 | 11 | 13 |
销售量y(kg) |
(2)请你根据表格中的信息判断每天的销售量y(千克)与销售单价x(元)之间存在怎样的函数关系.并求y(千克)与x(元)(x>0)的函数关系式;
(3)设该超市销售这种水果每天获取的利润为W元,求W与x的函数关系式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?