题目内容
【题目】如图,MN是⊙O的直径,MN=2,点A在⊙O上,∠AMN=30°,B为的中点,P是直径MN上一动点,则PA+PB的最小值为( )
A. B. C. 1 D. 2
【答案】B
【解析】
作A关于MN的对称点Q,连接MQ,然后根据圆周角定理、圆的对称性质和勾股定理解答即可.
作A关于MN的对称点Q,连接MQ,BQ,BQ交MN于P,此时AP+PB=QP+PB=QB,
根据两点之间线段最短,PA+PB的最小值为QB的长度,
连接AO,OB,OQ,
∵B为中点,
∴∠BON=∠AMN=30°,
∴∠QON=2∠QMN=2×30°=60°,
∴∠BOQ=30°+60°=90°.
∵直径MN=2,
∴OB=1,
∴BQ==.
则PA+PB的最小值为.
故选B.
练习册系列答案
相关题目