题目内容

【题目】如图所示,D、E分别是△ABC的边BC、AC上的点,且AB=AC,AD=AE.

(1)若∠BAD=20°,则∠EDC= °.

(2)若∠EDC=20°,则∠BAD= °.

(3)设∠BAD=α,EDC=β,你能由(1)(2)中的结果找到α、β间所满足的关系吗?请说明理由.

【答案】(1)10°;(2)40°;(3)α=2β .

【解析】

问题即是弄清∠CDE与∠BAD、∠DAE、∠ADE的大小关系,通过等边对等角及外角与内角的关系探索求解.

:(1)∵AB=AC,∴∠B=∠C,

∵AD=AE,∴∠ADE=∠AED,

又∵∠ADC=∠B+∠BAD,∠AED=∠C+∠EDC,

∴∠ADE+∠EDC=∠B+∠BAD,

即∠C+∠EDC+∠EDC=∠B+∠BAD,

∴2∠EDC=∠BAD,

BAD=20°

∴∠EDC=10

(2) ∵AB=AC,∴∠B=∠C,

∵AD=AE,∴∠ADE=∠AED,

又∵∠ADC=∠B+∠BAD,∠AED=∠C+∠EDC,

∴∠ADE+∠EDC=∠B+∠BAD,

即∠C+∠EDC+∠EDC=∠B+∠BAD,

∴2∠EDC=∠BAD,

EDC=20°

BAD=40°

(3)设∠BAD=α,EDC=β,则,α=2β.

证明:∵AB=AC,

∴∠B=C,

又∵∠ADC=BAD+B ,

∴∠ADC=BAD+C……①,

AD=AE,

∴∠ADE=AED,

∵∠ADC=EDC+ADE,

∴∠ADC=EDC+AED,

又∵∠AED=EDC+C,

∴∠ADC=EDC+EDC+C=2EDC+C……②,

由①②得:∠BAD+C=2EDC+C,

所以:∠BAD=2EDC,

结论:α=2β.

故答案为(1)10°;(2)40°;(3)α=2β.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网