题目内容
【题目】如图,已知在中,,点是的中点,连结并延长,与的延长线相交于点,连接,若,,则四边形的面积是( )
A. B. C. 10D.
【答案】A
【解析】
由已知易得四边形AFBD是平行四边形,又由于AD=BC=BD可知是菱形,BA与DF垂直平分,而tan∠BDC=tan∠EBD==2,AD=BD=5,即可求出BE,DE. 根据菱形面积等于四倍的△BED的面积,可得结果.
解:∵在中,AD//BC,
∴∠DAB=∠ABF,∠ADF=∠BFD,
在△ADE和△BFE中,
,
∴△ADE≌△BFE,
∴AD=BF,
∴四边形AFBD是平行四边形,
又∵BD=BC,
∴AD=BD
∴是菱形
∴DF⊥AB,DE=EF,AE=BE.
∵CD∥AB,
∴∠BDC=∠EBD
∴tan∠BDC=tan∠EBD==2,
∵BD=BC=AD=5,
∴BD2=BE2+DE2=5BE2,
∴BE=,DE=2,
∴S四边形AFBD=DE×BE×4=×2××4=20.
故选A.
【题目】暑假到了,即将迎来手机市场的销售旺季.某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:
甲 | 乙 | |
进价(元/部) | 4000 | 2500 |
售价(元/部) | 4300 | 3000 |
该商场计划投入15.5万元资金,全部用于购进两种手机若干部,期望全部销售后可获毛利润不低于2万元.(毛利润=(售价﹣进价)×销售量)
(1)若商场要想尽可能多的购进甲种手机,应该安排怎样的进货方案购进甲乙两种手机?
(2)通过市场调研,该商场决定在甲种手机购进最多的方案上,减少甲种手机的购进数量,增加乙种手机的购进数量.已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.