题目内容
【题目】如图,在平面直角坐标系中,⊙P的圆心是(2,a),半径为2,直线y=﹣x与⊙P相交于A、B两点,若弦AB的长为2,则a的值是( )
A. ﹣2B. ﹣2+C. ﹣2﹣D. ﹣2﹣
【答案】D
【解析】
设⊙P与y轴相切于点C,连接PC,则有PC⊥OC,根据点P的坐标可得⊙P的半径PC为2,连接CP并延长交直线y=x于点E,则有CE=OC.过点P作PD⊥AB于D,由垂径定理可求出AD,在Rt△ADP中,运用勾股定理可求出PD,在Rt△PDE中,运用三角函数可求出PE,就可求出a的值.
解:设⊙P与y轴相切于点C,连接PC,则有PC⊥OC.
∵点P的坐标为(2,a),
∴PC=2.
①若点P在直线y=x上方,如图1,
连接CP并延长交直线y=x于点E,则有CE=OC.
∵CE⊥OC,CE=OC,
∴∠COE=∠CEO=45°.
过点P作PD⊥AB于D,
由垂径定理可得:AD=BD=AB=.
在Rt△ADP中,
PD==1.
在Rt△PDE中,
sin∠PED=,
解得:PE=.
∴OC=CE=CP+PE=2+.
∴a=﹣2﹣.
练习册系列答案
相关题目