题目内容
【题目】如图,为任意三角形,以边为边分别向外作等边三角形和等边三角形,连接、并且相交于点.求的度数.
【答案】120°
【解析】
根据等边三角形的性质得出AD=AB,AE=AC,∠ACE=∠AEC=60°,∠DAB=∠EAC=60°,求出∠DAC=∠BAE,根据SAS推出△DAC≌△BAE,然后利用全等三角形的性质和三角形的外角性质求解即可.
解:∵以AB、AC为边分别向外做等边△ABD和等边△ACE,
∴AD=AB,AE=AC,∠ACE=∠AEC=60°,∠DAB=∠EAC=60°,
∴∠DAB+∠BAC=∠EAC+∠BAC,
∴∠DAC=∠BAE,
在△DAC和△BAE中,,
∴△DAC≌△BAE(SAS),
∴∠ACD=∠AEB
∵∠BPC=∠BEC+∠DCE
∴∠BPC=∠BEC+∠ACD+∠ACE
=∠BEC+∠AEB+∠ACE
=∠AEC+∠ACE
=120°.
【题目】根据重庆轨道集团提供的日客运量统计,2019年2月21日重庆轨道交通首次日客运量突破300万乘次,其中近期开通的重庆轨道交通环线日客运量为21.5万乘次.据了解,某工作日上午7点至9点轨道环线四公里站有20列列车进出站,每列车进出站时,将上车和下车的人数记录下来,各得到20个数据,并将数据进行整理,绘制成了如下两幅不完整统计图.(数据分组为:组:,组:,组:,组:,组:)
I.上车人数在组的是:190,190,191,192,193,193,195,196,198,198,198,198;
II.上车人数的平均数、中位数如下表:
平均数 | 中位数 | |
上车人数(人) | 194 | a |
根据以上信息,回答下列问题:
(1)请补全频数分布直方图;
(2)表中________,扇形统计图中_________,扇形统计图中组所在的圆心角度数为________度;
(3)请利用平均数,估算一周内5个工作日的上午7点至9点重庆轨道环线四公里站的上车总人数.