题目内容

【题目】根据要求回答问题:
(1)【问题发现】
如图1,在Rt△ABC中,AB=AC=2,∠BAC=90°,点D为BC的中点,以CD为一边作正方形CDEF,点E恰好与点A重合,求线段BE与AF的数量关系

(2)【拓展研究】
在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE,CE,AF,线段BE与AF的数量关系有无变化?请仅就图2的情形给出证明;

(3)【问题发现】
当正方形CDEF旋转到B,E,F三点共线时候,直接写出线段AF的长.

【答案】
(1)解:在Rt△ABC中,AB=AC=2,

根据勾股定理得,BC= AB=2

点D为BC的中点,

∴AD= BC=

∵四边形CDEF是正方形,

∴AF=EF=AD=

∵BE=AB=2,

∴BE= AF,


(2)解:无变化;

如图2,在Rt△ABC中,AB=AC=2,

∴∠ABC=∠ACB=45°,

∴sin∠ABC= =

在正方形CDEF中,∠FEC= ∠FED=45°,

在Rt△CEF中,sin∠FEC=

∵∠FCE=∠ACB=45°,

∴∠FCE﹣∠ACE=∠ACB﹣∠ACE,

∴∠FCA=∠ECB,

∴△ACF∽△BCE,

∴BE= AF,

∴线段BE与AF的数量关系无变化


(3)解:当点E在线段AF上时,如图2,

由(1)知,CF=EF=CD=

在Rt△BCF中,CF= ,BC=2

根据勾股定理得,BF=

∴BE=BF﹣EF=

由(2)知,BE= AF,

∴AF= ﹣1,

当点E在线段BF的延长线上时,如图3,

在Rt△ABC中,AB=AC=2,

∴∠ABC=∠ACB=45°,

∴sin∠ABC= =

在正方形CDEF中,∠FEC= ∠FED=45°,

在Rt△CEF中,sin∠FEC=

∵∠FCE=∠ACB=45°,

∴∠FCB+∠ACB=∠FCB+∠FCE,

∴∠FCA=∠ECB,

∴△ACF∽△BCE,

∴BE= AF,

由(1)知,CF=EF=CD=

在Rt△BCF中,CF= ,BC=2

根据勾股定理得,BF=

∴BE=BF+EF= +

由(2)知,BE= AF,

∴AF= +1.

即:当正方形CDEF旋转到B,E,F三点共线时候,线段AF的长为 ﹣1或 +1.


【解析】(1)先利用等腰直角三角形的性质得出AD= ,再得出BE=AB=2,即可得出结论;(2)先利用三角函数得出 ,同理得出 ,夹角相等即可得出△ACF∽△BCE,进而得出结论;(3)分两种情况计算,当点E在线段BF上时,如图2,先利用勾股定理求出EF=CF=AD= ,BF= ,即可得出BE= ,借助(2)得出的结论,当点E在线段BF的延长线上,同前一种情况一样即可得出结论.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网