题目内容

【题目】(满分10分)如图,AB为⊙O的直径,点E在⊙O上,C为的中点,过点C作直线CD⊥AE于D,连接AC,BC.

(1)试判断直线CD与⊙O的位置关系,并说明理由;

(2)若AD=2,AC=,求AB的长.

【答案】(1)相切;(2)3.

【解析】

试题分析:(1)连接OC,由C为的中点,得到∠1=∠2,等量代换得到∠2=∠ACO,根据平行线的性质得到OC⊥CD,即可得到结论;

(2)连接CE,由勾股定理得到CD的长,根据切割线定理得到=ADDE,根据勾股定理得到CE的长,由圆周角定理得到∠ACB=90°,即可得到结论.

试题解析:(1)相切,连接OC,∵C为的中点,∴∠1=∠2,∵OA=OC,∴∠1=∠ACO,∴∠2=∠ACO,∴AD∥OC,∵CD⊥AD,∴OC⊥CD,∴直线CD与⊙O相切;

(2)方法1:连接CE,∵AD=2,AC=,∵∠ADC=90°,∴CD==,∵CD是⊙O的切线,∴=ADDE,∴DE=1,∴CE==,∵C为的中点,∴BC=CE=,∵AB为⊙O的直径,∴∠ACB=90°,∴AB==3.

方法2:∵∠DCA=∠B,易得△ADC∽△ACB,∴,∴AB=3.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网