题目内容
【题目】(﹣2)×3的结果是( )A.﹣5B.1C.﹣6D.6
【答案】C【解析】解:原式=﹣2×3 =﹣6.故选:.根据两数相乘同号得正,异号得负,再把绝对值相乘,可得答案.
【题目】若a+b=3,a2+b2=7﹣3ab,则ab等于( )
A.2B.1C.﹣2D.﹣1
【题目】某校需购买一批课桌椅供学生使用,已知A型课桌椅230元/套,B型课桌椅200元/套.(1)该校购买了A,B型课桌椅共250套,付款53000元,求A,B型课桌椅各买了多少套?(2)因学生人数增加,该校需再购买100套A,B型课桌椅,现只有资金22000元,最多能购买A型课桌椅多少套?
【题目】在直线上顺次取A,B,C三点,分别以AB,BC为边长在直线的同侧作正三角形,作得两个正三角形的另一顶点分别为D,E. (1)如图①,连结CD,AE,求证:CD=AE;(2)如图②,若AB=1,BC=2,求DE的长;(3)如图③,将图②中的正三角形BEC绕B点作适当的旋转,连结AE,若有DE2+BE2=AE2 , 试求∠DEB的度数.
【题目】股民小张五买某公司股票1000股,每股14.80元,表为第二周星期一至星期五每日该股票涨跌情况(1)星期三收盘时,每股是多少元?(2)本周内最高价是每股多少元?最低价是每股多少元?(3)已知小张买进股票时付了成交额0.15%的手续费,卖出时付了成交额0.15%的手续费和成交额0.1%的交易税,如果小张在星期五收盘前将全部股票卖出,那么他的收益情况如何?
【题目】A(0,4)是直角坐标系y轴上一点,P是x轴上一动点,从原点O出发,沿正半轴运动,速度为每秒1个单位长度,以P为直角顶点在第一象限内作等腰Rt△APB.设P点的运动时间为t秒.(1)若AB∥x轴,求t的值;(2)设点B的坐标为(x,y),试求y关于x的函数表达式;(3)当t=3时,平面直角坐标系内有一点M(3,a),请直接写出使△APM为等腰三角形的点M的坐标.
【题目】如图,直线y=﹣x+5与双曲线(x>0)相交于A,B两点,与x轴相交于C点,△BOC的面积是.若将直线y=﹣x+5向下平移1个单位,则所得直线与双曲线(x>0)的交点有( )
A.0个 B.1个 C.2个 D.0个,或1个,或2个
【题目】把下列各数填入表示它所在的集合里.﹣2,7,﹣1.732,0,3.14,﹣(+5),﹣ ,﹣(﹣3),2007(1)正数集合{ …}(2)负数集合{ …}(3)整数集合{ …}(4)有理数集合{ …}.
【题目】(满分10分)如图,AB为⊙O的直径,点E在⊙O上,C为的中点,过点C作直线CD⊥AE于D,连接AC,BC.
(1)试判断直线CD与⊙O的位置关系,并说明理由;
(2)若AD=2,AC=,求AB的长.