题目内容
【题目】如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′OP=,则称点P′是点P关于⊙O的“反演点”.
如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B关于⊙O的反演点,求A′B′的长.
【答案】.
【解析】
试题分析:设OA交⊙O于C,连结B′C,如图2,由“反演点”定义得出OA′=2,OB′=4,则点A′为OC的中点,点B和B′重合,再证明△OBC为等边三角形,则B′A′⊥OC,在Rt△OA′B′中,利用正弦的定义可求A′B′的长.
试题解析:设OA交⊙O于C,连结B′C,如图2,∵OA′OA=,而r=4,OA=8,∴OA′=2,∵OB′OB=,∴OB′=4,即点B和B′重合,∵∠BOA=60°,OB=OC,∴△OBC为等边三角形,而点A′为OC的中点,∴B′A′⊥OC,在Rt△OA′B′中,sin∠A′OB′=,∴A′B′=4sin60°=.
练习册系列答案
相关题目