题目内容
【题目】二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:
①4a+b=0;
②9a+c<3b;
③25a+5b+c=0;
④当x>2时,y随x的增大而减小.
其中正确的结论有( )
A.1个
B.2个
C.3个
D.4个
【答案】D
【解析】解:∵抛物线的对称轴为直线x=﹣ =2,
∴b=﹣4a,即4a+b=0,(故①正确);
∵当x=﹣3时,y<0,
∴9a﹣3b+c<0,
即9a+c<3b,(故②正确);
∵抛物线与x轴的一个交点为(﹣1,0),对称轴为直线x=2,
∴抛物线与x轴的一个交点为(5,0),
∴25a+5b+c=0,(故③正确),
∵抛物线开口向下,对称轴为直线x=2,
∴x>2时,y随x的增大而减小,(故④正确).
故选D.
【考点精析】利用二次函数图象以及系数a、b、c的关系对题目进行判断即可得到答案,需要熟知二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c).
练习册系列答案
相关题目