题目内容
【题目】如果两个圆只有一个公共点,那么我们称这两个圆相切,这个公共点就叫做切点,当两圆相切时,如果其中一个圆(除切点外)在另一个圆的内部,叫做这两个圆内切;其中一个圆(除切点外)在另一个圆的外部,叫做这两个圆外切.如图所示:两圆的半径分别为R,r(R>r),两圆的圆心之间的距离为d,若两个圆外切则d=R+r,若两个圆内切则d=R﹣r,已知两圆的半径分别为方程x2+mx+3=0的两个根,当两圆相切时,已知这两个圆的圆心之间的距离为4,则m的值为 .
【答案】-4或-2
【解析】解:当两圆外切时,d=r+R=﹣m=4,
解得:m=﹣4;
当两圆内切时,d=R﹣r=4,
则R=r+4,
∵Rr=3,
∴(r+4)r=3,
解得:r= ﹣2或r= +2(舍去)
∴R=r+4= +2,
∴R+r=﹣m,
即: ﹣2+ +2=﹣m,
解得:m=﹣2 ,
所以答案是:﹣4或﹣2 .
【考点精析】关于本题考查的圆与圆的位置关系,需要了解两圆之间有五种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫相交.两圆圆心之间的距离叫做圆心距.两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R-r<P<R+r;内切P=R-r;内含P<R-r.才能得出正确答案.
【题目】骑共享单车已成为人们喜爱的一种绿色出行方式.已知A、B、C三家公司的共享单车都是按骑车时间收费,标准如下:
公司 | 单价(元/半小时) | 充值优惠 |
A | m | 充20元送5元,即:充20元实得25元 |
B | m-0.2 | 无 |
C | 1 | 充20元送20元,即:充20元实得40元 |
(注:使用这三家公司的共享单车,不足半小时均按半小时计费.用户的账户余额长期有效,但不可提现.)
4月初,李明注册成了A公司的用户,张红注册成了B公司的用户,并且两人在各自账户上分别充值20元.一个月下来,李明、张红两人使用单车的次数恰好相同,且每次都在半小时以内,结果到月底李明、张红的账户余额分别显示为5元、8元.
(1)求m的值;
(2)5月份,C公司在原标准的基础上又推出新优惠:每月的月初给用户送出5张免费使用券(1
次用车只能使用1张券).如果王磊每月使用单车的次数相同,且在30次以内,每次用车都不超过
半小时. 若要在这三家公司中选择一家并充值20元,仅从资费角度考虑,请你帮他作出选择,并说
明理由.