题目内容
【题目】如图,游客在点A处做缆车出发,沿A﹣B﹣D的路线可至山顶D处,假设AB和BD都是直线段,且AB=BD=600m,α=75°,β=45°,求DE的长. (参考数据:sin75°≈0.97,cos75°≈0.26, ≈1.41)
【答案】解:在Rt△ABC中,∵AB=600m,∠ABC=75°, ∴BC=ABcos75°≈600×0.26≈156m,
在Rt△BDF中,∵∠DBF=45°,
∴DF=BDsin45°=600× ≈300×1.41≈423,
∵四边形BCEF是矩形,
∴EF=BC=156,
∴DE=DF+EF=423+156=579m.
答:DE的长为579m.
【解析】在R△ABC中,求出BC=ABcos75°≈600×0.26≈156m,在Rt△BDF中,求出DF=BDsin45°=600× ≈300×1.41≈423,由四边形BCEF是矩形,可得EF=BC,由此即可解决问题.
【题目】如图,在一次测量活动中,小丽站在离树底部E处5m的B处仰望树顶C,仰角为30°,已知小丽的眼睛离地面的距离AB为1.65m,那么这棵树大约有多高?(结果精确到0.1m,参考数据: ≈1.73)
【题目】甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:
甲:9,10,8,5,7,8,10,8,8,7
乙:5,7,8,7,8,9,7,9,10,10
丙:7,6,8,5,4,7,6,3,9,5
(1)根据以上数据完成下表:
平均数 | 中位数 | 方差 | |
甲 | 8 | 8 | |
乙 | 8 | 8 | 2.2 |
丙 | 6 | 3 |
(2)根据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;
(3)比赛时三人依次出场,顺序由抽签方式决定,求甲、乙相邻出场的概率.
【题目】某中学初三(1)班共有40名同学,在一次30秒跳绳测试中他们的成绩统计如下表:
跳绳数/个 | 81 | 85 | 90 | 93 | 95 | 98 | 100 |
人 数 | 1 | 2 | 8 | 11 | 5 |
将这些数据按组距5(个)分组,绘制成如图的频数分布直方图(不完整).
(1)将表中空缺的数据填写完整,并补全频数分布直方图;
(2)这个班同学这次跳绳成绩的众数是个,中位数是个;
(3)若跳满90个可得满分,学校初三年级共有720人,试估计该中学初三年级还有多少人跳绳不能得满分.