题目内容
【题目】已知点A(0,4),B(7,0),C(7,4),连接AC,BC得到矩形AOBC,点D的边AC上,将边OA沿OD折叠,点A的对应边为A'.若点A'到矩形较长两对边的距离之比为1:3,则点A'的坐标为 .
【答案】( ,3)或( ,1)或(2 ,﹣2)
【解析】解:∵点A(0,4),B(7,0),C(7,4), ∴BC=OA=4,OB=AC=7,分两种情况:(1)当点A'在矩形AOBC的内部时,过A'作OB的垂线交OB于F,交AC于E,如图1所示:
①当A'E:A'F=1:3时,∵A'E+A'F=BC=4,∴A'E=1,A'F=3,由折叠的性质得:OA'=OA=4,在Rt△OA'F中,由勾股定理得:OF= = ,∴A'( ,3);②当A'E:A'F=3:1时,同理得:A'( ,1);(2)当点A'在矩形AOBC的外部时,此时点A'在第四象限,过A'作OB的垂线交OB于F,交AC于E,如图2所示:
∵A'F:A'E=1:3,则A'F:EF=1:2,∴A'F= EF= BC=2,由折叠的性质得:OA'=OA=4,在Rt△OA'F中,由勾股定理得:OF= =2 ,∴A'(2 ,﹣2);
所以答案是:( ,3)或( ,1)或(2 ,﹣2).
【考点精析】解答此题的关键在于理解矩形的性质的相关知识,掌握矩形的四个角都是直角,矩形的对角线相等,以及对翻折变换(折叠问题)的理解,了解折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等.
【题目】如图,将矩形ABCD沿EF折叠,使点B,D重合,已知AB=3,AD=4,则 ①DE=DF;②DF=EF;③△DCF≌△DGE;④EF= .
上面结论正确的有( )
A.1个
B.2个
C.3个
D.4个
【题目】为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.
种类 | A | B | C | D | E |
出行方式 | 共享单车 | 步行 | 公交车 | 的士 | 私家车 |
根据以上信息,回答下列问题:
(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;
(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;
(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.